• 23.06.2021

Где фаза а где ноль: Как определить фазу и ноль

Содержание

Фаза, ноль, заземление. Как их определить и что это такое

Давайте для начала разберемся что такое фаза и что такое ноль, а потом посмотрим как их найти.

В промышленных масштабах у нас производится трехфазный переменный ток, а в быту мы используем, как правило, однофазный.

Это достигается за счет подключения нашей проводки к одному из трех фазовых проводов (рисунок 1), причем, какая именно фаза приходит в квартиру нам, для дальнейшего рассмотрения материала, глубоко безразлично. Поскольку этот пример очень схематичен, следует кратко рассмотреть физический смысл такого подключения (рисунок 2).

Электрический ток возникает при наличии замкнутой электрической цепи, которая состоит из обмотки (Lт) трансформатора подстанции (1), соединительной линии (2), электропроводки нашей квартиры (3). (Здесь обозначение фазы L, нуля — N).

Еще момент — чтобы по этой цепи протекал ток, в квартире должен быть включен хотя бы один потребитель электроэнергии Rн. В противном случае тока не будет, но НАПРЯЖЕНИЕ на фазе останется.

Один из концов обмотки Lт на подстанции заземлен, то есть имеет электрический контакт с грунтом (Змл). Тот провод, который идет от этой точки является нулевым, другой — фазовым.

Отсюда следует еще один очевидный практический вывод: напряжение между «нулем» и «землей» будет близко к нулевому значению (определяется сопротивлением заземления), а «земля» — «фаза», в нашем случае 220 Вольт.

Кроме того, если гипотетически (На практике так делать нельзя!) заземлить нулевой провод в квартире, отключив его от подстанции (рис.3), напряжение «фаза» — «ноль» у нас будет те же 220 Вольт.

Что такое фаза и ноль разобрались. Давайте поговорим про заземление. Физический смысл его, думаю уже ясен, поэтому предлагаю взглянуть на это с практической точки зрения.

При возникновении по каким- либо причинам электрического контакта между фазой и токопроводящим (металлическим, например) корпусом электроприбора, на последнем появляется напряжение.

При касании этого корпуса может возникнуть, протекающий через тело электрический ток. Это обусловлено наличием электрического контакта между телом и «землей» (рис.4).

Чем меньше сопротивление этого контакта (влажный или металлический пол, непосредственный контакт строительной конструкции с естественными заземлителями (батареи отопления, металлические водопроводные трубы) тем большая опасность Вам грозит.

Решение подобной проблемы состоит в заземлении корпуса (рисунок 5), при этом опасный ток «уйдет» по цепи заземления.

Конструктивно реализация этого способа защиты от поражения электрическим током для квартир, офисных помещений состоит в прокладке отдельного заземляющего проводника РЕ (рис.6), который впоследствии заземляется тем или иным образом.

Как это делается — тема для отдельного разговора, например, в частном доме можно самостоятельно сделать заземляющий контур. Существуют различные варианты со своими достоинствами, недостатками, но для дальнейшего понимания этого материала они не принципиальны, поскольку предлагаю рассмотреть нескольку сугубо практических вопросов.

КАК ОПРЕДЕЛИТЬ ФАЗУ И НОЛЬ

Где фаза, где ноль — вопрос, возникающий при подключении любого электротехнического устройства.

Для начала давайте рассмотрим как найти фазу. Проще всего это сделать индикаторной отверткой (рисунок 7).

Токопроводящим жалом индикаторной отвертки (1) касаемся контролируемого участка электрической цепи (во время работы контакт этой части отвертки с телом недопустим!), пальцем руки касаемся контактной площадки 3, свечение индикатора 2 свидетельствует о наличии фазы.

Помимо индикаторной отвертки фазу можно проверить мультиметром (тестером), правда это более трудоемко. Для этого мультиметр следует перевести в режим измерения переменного напряжения с пределом более 220 Вольт.

Одним щупом мультиметра (каким — безразлично) касаемся участка измеряемой цепи, другим — естественного заземлителя (батареи отопления, металлические водопроводные трубы). При показаниях мультиметра, соответствующим напряжению сети (около 220 В) на измеряемом участке цепи присутствует фаза (схема рис. 8).

Обращаю Ваше внимание — если проведенные измерения показывают отсутствие фазы утверждать что это ноль нельзя. Пример на рисунке 9.

  1. Сейчас в точке 1 фазы нет.
  2. При замыкании выключателя S она появляется.

Поэтому следует проверить все возможные варианты.

Хочу заметить, что при наличии в электропроводке провода заземления отличить его от нулевого проводника методом электрических измерений в пределах квартиры невозможно.

Как правило, провод, которым выполнено заземление имеет желто зеленый цвет, но лучше убедиться в этом визуально, например снять крышку розетки и посмотреть какой провод подсоединен к заземляющим контактам.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Фаза и ноль — что такое, как определить фазу и ноль в электричестве

Далеко не всегда хочется вызывать специалистов при необходимости заменить люстру, повесить бра или дополнительный светильник. Но когда электромонтажными работами занимаешься впервые, так или иначе начинаешь задаваться вопросом, что представляют собой такие понятия как «ноль» и «фаза».

Разбираться в этих обозначениях необходимо хотя бы для того, чтобы правильно подключить провода. Желательно восполнить пробелы в знаниях об электричестве, при отсутствии опыта в данной сфере, перед началом работ.

Выделяют три обозначения проводов:

  • фаза
  • ноль
  • заземление

Определить, какой кабель в розетке или осветительном приборе к чему относится, можно подручными средствами или по цвету. Под понятием «ноль», как правило, подразумевают «рабочий ноль», «фаза» — «фазные провода», а под «заземлением» — «защитный ноль».

Профессиональные электрики могут различать кабели с первого взгляда. А вот для рядового человека различать данные обозначения немного сложно. Тем более что специальные инструменты, позволяющие определить, где фаза и ноль, имеются далеко не у всех.

В реальности способов распознания проводов не так уж и много. А безопасных – еще меньше. Поэтому чаще всего определяют кабели по цвету.

Маркировка кабелей по цвету

Это один из наиболее простых методов. Чтобы определить, что такое фаза и ноль по цвету, необходимо четко знать какие оттенки и чему соответствуют. Можно воспользоваться информацией о принятых в стране стандартах.

Не секрет, что каждый провод имеет индивидуальный цвет. Поэтому распознавание нуля не должно составлять особых проблем. Полученные знания позволят легко справиться с монтажом осветительного прибора или установкой розетки.

Особенно актуален этот способ для новостроек. Ведь там, как правило, провода протягиваются опытными специалистами, которые четко соблюдают нормы и стандарты. Принятый на территории Российской Федерации в 2004 году стандарт IEC 60446 жестко регламентирует разделение фазы, заземления и нуля по цвету.

Стоит учесть, что:

  • если провод имеет синий либо сине-белый оттенок, можно смело говорить о том, что это – рабочий ноль
  • защитный ноль представлен кабелями в желто-зеленой оболочке
  • другие цвета характерны для фазы. Это могут быть красный, коричневый, белый либо черный. Возможны и другие варианты.

Такое обозначение успешно применяется в большинстве случаев. Но если проводка старая, или есть сомнения в профессионализме электриков, целесообразнее пользоваться дополнительными методами.

Самостоятельное определение фазы и ноля при помощи подручных средств

Специалисты рекомендуют для облегчения определения проводов начинать именно с распознавания фазы. Этот способ можно использовать совместно с предыдущим (по цвету).

Индикаторная отвертка непременно найдется в арсенале каждого домашнего мастера. Она необходима как для проведения комплекса работ по электромонтажу, так и при элементарной замене ламп либо установке осветительных приборов.

Метод до смешного прост. При касании жалом индикаторной отвертки провода определенного цвета, находящегося под напряжением, и одномоментного прикосновения контакта на инструменте, должен загореться индикатор. Он сигнализирует о наличии сопротивления. Значит, проверяемый провод является фазным.

Определение при помощи этого метода строится на том, что внутри инструмента располагается лампочка и резистор (сопротивление). Когда электрическая цепь замыкается, загорается сигнал. Именно наличие в индикаторной отвертке сопротивления и позволяет производить процедуру совершенно безопасно для человека, способствуя снижению тока до минимальных значений.

Метод определения фазы и ноля при помощи контрольной лампы

Этот способ подразумевает использование контрольной лампы для определения проводов определенного цвета в трехпроводной сети. Применять данный метод следует с особой осторожностью. 

Применение этого метода подразумевает создание контрольной лампы. Для этого в патрон вкручивается обычная лампочка. В клеммах патрона размещаются провода, на концах которых отсутствует изоляция. При отсутствии возможности создать такую конструкцию допустимо использовать традиционную настольную лампу, оснащенную электрической вилкой. Теперь для определения необходимо поочередно, по цветам присоединять провода.

Стоит отметить, что использование данного метода позволяет определить, присутствует ли среди пары проверяемых проводов фазный. А какой именно из этих двух – фаза, распознать будет непросто. Загорание контрольной лампы означает, что с высокой долей вероятности одни провод – фаза, а другой – ноль.

Отсутствие света говорит о том, что фазный провод среди проверяемых отсутствует. Хотя возможен вариант, что нет именно нуля. Поэтому применение этого метода целесообразно, скорее всего, для определения правильности монтажа и работоспособности проводки.

Определение сопротивления петли фаза-ноль

Для обеспечения нормального функционирования электрических приборов и проверки автоматов необходимо периодически проводить замеры сопротивления петли фаза-ноль. Потому как первоочередными причинами поломок осветительных приборов являются перегрузки сети и короткое замыкание. Измерение сопротивления позволяет в кратчайшие сроки выявить неисправность и предотвратить подобную ситуацию.

Далеко не все знают, что представляет собой понятие «петля фаза-ноль». Под этой фразой скрывается контур, образованный в результате соединения нулевого провода, находящегося в заземленной нейтрали. Замыкание этой электрической сети образует петлю фаза-ноль.

Измеряют сопротивление в этом контуре следующими методами:

  • падением уровня напряжения в отключенной цепи
  • падением уровня напряжения в результате сопротивления возрастающей нагрузки
  • использованием профессионального инструмента, интерпретирующего короткое замыкание в цепи

Второй способ используется чаще всего, так как отличается удобством, возможностью быстро измерить сопротивление, а также безопасностью.

Как найти фазу, землю и ноль в квартирной электропроводке – PROFI.RU — За профи говорят дела

Алексей Помазов
профессиональный электромонтёр, инженер промышленного оборудования, опыт работы — 18 лет

В комментариях к статье «Что нужно знать о ремонте электропроводки» был задан вопрос о том, как в электропроводке найти ноль и землю, если провода не соответствуют традиционным цветам. На вопрос отвечает специалист по электромонтажу, эксперт PROFI.RU.

Согласно правилам устройства электроустановок (ПУЭ, главный документ всех электриков) — электропровода разного назначения должны иметь отличающуюся по цвету маркировку. И если проводку в вашей квартире делал грамотный специалист, то, открыв разделительную коробку, вы увидите провода разного цвета.

  • Земля будет жёлтой, зелёной либо жёлто-зелёной.
  • Ноль будет синим или голубым.
  • Фазе досталась самая богатая палитра, она бывает серой и красной, розовой и бирюзовой, оранжевой и фиолетовой, но чаще всего — коричневой, чёрной или белой.

Но иногда домашнего мастера ждёт неприятный сюрприз в виде проводов одного цвета. Или того хуже — от щитка до квартиры тянутся провода одного цвета, а внутри помещения — другого. Как разобраться в хитросплетении проводов?

Правильнее всего пригласить квалифицированного электрика, электричество — штука коварная и опасная. Но если вы совершенно уверены в своей осторожности и аккуратности, действуйте!

Ищем фазу

Первым делом отключите подачу тока в квартиру на электрощите. Все переключатели должны быть выключены! Затем нужно добраться до проводов, сняв уплотняющую рамку и раскрутив розетку.

Отсоединив провода от розетки, обязательно разведите их в разные стороны.

После этого можно освободить провода от изоляции и, подав в квартиру напряжение, приступить к поиску фазы при помощи индикаторной отвёртки. Держите инструмент только за защитный корпус, расположив указательный палец на металлическом конце рукоятки. Поочерёдно прикоснитесь жалом отвёртки к проводам. Фаза — тот, на котором загорится индикатор. Если провод двухжильный, этого достаточно: второй проводник — это ноль. В случае трёхжильного придётся продолжить изыскания при помощи мультиметра.

В поиске земли

Мультиметр — это комбинированный электроизмерительный прибор, сочетающий функции вольтметра, амперметра и омметра. Нужно включить мультиметр на измерение переменного напряжения в диапазоне выше 220 вольт. Одним из щупов прибора прикасаемся к найденной ранее фазе, другим — сначала к одному из неопознанных проводов, потом к другому. Смотрим, какое значение напряжения показывает мультиметр в каждом из случаев. 220 вольт соответствует нулю, при прикосновении к земле значение будет меньше.

Кстати, при помощи мультиметра можно определить и фазу. Диапазон измерения будет тот же — выше 220 вольт. Щупом, который тянется от гнезда с маркировкой V, поочерёдно прикасаемся к проводам. Фаза просигнализирует о себе показателем 8–15 вольт, а ноль — нулём на шкале прибора.

Как определить фазу и ноль без приборов как найти мультиметром

В состав любого кабеля в обязательном порядке входит одна нулевая жила и одна либо несколько фазных.

От правильного определения функционального назначения жил кабеля зависит простота монтажа и эксплуатации системы электроснабжения, а также безопасность лиц, обслуживающих ее и производящих какие-либо электромонтажные работы.

Основные понятия

Давайте сперва разберемся, что такое ноль и фаза в электричестве.

Итак, фаза в электричестве – это проводник, по которому электрический ток движется в направлении энергопринимающего устройства. Ноль, в свою очередь, является проводником, по которому электрический ток движется в обратном направлении.

Современные требования, предъявляемые к безопасности организации электрических сетей, предполагают также наличие еще одного проводника в составе токоведущего кабеля, который будет выполнять защитную функцию. Заземляющий проводник – это элемент, преднамеренно соединенный с заземляющим контуром и предназначенный для того, чтобы уберечь человека от поражения электрическим током.

Неправильное определение, а также соединение нулевых и фазных жил токоведущего кабеля может привести к непредвиденным ситуациям – короткому замыканию, выходу из строя дорогостоящего оборудования и поражению человека электрическим током. По этой причине чрезвычайно важно уметь отличать фазный и нулевой проводники.

Как отличить фазу от нуля

Существует целый ряд способов – как профессиональных, так и не очень – для определения функционального назначения проводников, входящих в состав кабеля.

С применением мультиметра

Как мультиметром определить фазу и ноль

Просто и надежно определить, где ноль, а где фаза в электропроводке, можно при помощи мультиметра (тестера). Прежде всего, необходимо включить мультиметр в режим измерения переменного напряжения и выбираем подходящий предел измерения (выше напряжения в электрической сети). Далее вы можете избрать один из описанных ниже способов идентификации фазного проводника.

  1. Один из щупов мультиметра зажимается пальцами, другим необходимо коснуться той или иной жилы токоведущего кабеля. В случае соприкосновения щупа с фазой на дисплее мультиметра отобразится показание, приближенное к 220 В.
  2. Если вы ни в коем случае не желаете прикасаться к щупам мультиметра руками, то один из них, как и в предыдущем случае, скоммутируйте с идентифицируемым контактом, а другим дотроньтесь до оштукатуренной стены либо заведомо заземленной металлической поверхности.
  3. Как упоминалось выше, в современных системах электроснабжения предусмотрен также заземляющий проводник. Чтобы разобраться в назначении жил трехжильного либо многожильного кабеля следует попеременно касаться пар проводов щупами мультиметра. На его дисплее при контакте с фазой и нулем, а также с фазой и заземлением будет отображаться значение напряжения, близкое к 220 В (при этом фаза и заземление дают меньшее значение, нежели фаза и ноль). При одновременном касании щупами нулевого и заземляющего проводов, как и при касании двух фаз, на дисплее мультиметра будет «0».

Важно! При идентификации проводников по первому из вышеописанных методов обязательно убедитесь в том, что мультиметр включен в режим измерения напряжения, до того, как будете касаться пальцами одного из его щупов.

Как определить ноль и фазу индикаторной отверткой или отверткой для прозвонки сети

Со специальной индикаторной отверткой работать еще проще. Этот инструмент внешне очень похож на отвертку обыкновенную, но имеет относительно непростую внутреннюю конструкцию. Такую отвертку в народе также называют «контролькой».

 

Индикаторные отвертки

Важно! Не следует применять индикаторную отвертку для осуществления манипуляций над винтовыми соединениями (откручивания винтов и их закручивания). Такие действия являются наиболее распространенной причиной выхода из строя описываемого устройства.

Для того, чтобы определить функциональное назначение кабельных жил с ее помощью, нужно просто поочередно коснуться каждой из них жалом данного инструмента, нажимая при этом специальную кнопку в торцевой его части. Если в процессе указанных манипуляций светодиодная лампочка на отвертке загорится, значит, вы касаетесь фазного проводника, в противном случае – нулевого.

Не стоит путать индикаторную отвертку с отверткой, предназначенной для прозвонки сети. Последней также можно определить функционал той или иной жилы, однако нажимать на металлическую пластину в ее верхней части не нужно – иначе отвертка будет светиться в любом случае. Отвертка для прозвонки сети предусматривает в своей конструкции наличие батареек.

Визуальное определения фазы и нуля

При отсутствии вышеупомянутого инструментария вы можете задаться вопросом, как определить фазу и ноль без приборов. Одним из таких способов является их визуальная идентификация. Дело в том, что в соответствии с требованиями к монтажу электропроводки изоляция каждой жилы кабеля должна быть окрашена в свой собственный цвет.

При этом если с заземлением и нулем все понятно – они должны иметь желто-зеленую (желтую, зеленую) и синюю (голубую) окраску соответственно, то изоляционный слой фазного провода может быть выполнен в одном из следующих цветов: коричневый, черный, серый, а также красный, фиолетовый, розовый, белый, оранжевый, бирюзовый, — в зависимости от действующих на момент прокладки кабельной трассы нормативов.

По цвету проводки

Помимо цветовой, имеет место и буквенно-цифровая маркировка кабельных жил. В соответствии с ней ноль, фаза и земля обозначаются соответственно буквами N (neutral), L (line), PE (protectearth).

Контрольная лампочка

Еще один способ решения вопроса, как найти фазу и ноль без приборов, это самостоятельная сборка так называемой контрольной лампочки. Для ее изготовления потребуется обыкновенная лампа накаливания, подходящий к ней патрон, а также два отрезка медного провода (примерно по 50 сантиметров длиной).

Лампочка вкручивается в патрон, а проводники подключаются к его контактам. Другой конец одного из проводников необходимо закрепить на зачищенном до металлического блеска радиаторе системы отопления (либо на иной заведомо заземленной поверхности), а другим концом второго следует попеременно касаться проводников неопределенного функционала. При этом во время контакта с фазным проводом лампочка должна начать светиться.

Важно! В случае планирования систематического использования контрольной лампочки целесообразно ее саму поместить в защитный кожух, а к концам подсоединенных к патрону проводников прикрепить щупы (как у мультиметра).

Контрольной лампочкой

Контрольная картофелина

Название данного подраздела звучит весьма абсурдно, но тем не менее можно определить функциональное назначение токоведущих жил электрического кабеля и при помощи обыкновенной картофелины. Как и в вышеописанном методе с использованием самодельной контрольной лампочки, нам понадобятся два пятидесятисантиметровыхпровода.

Картофель разрезается пополам и в срез овоща на довольно приличном друг от друга расстоянии вставляются подготовленные проводники. Далее конец одного размещается на отопительной батарее(либо на иной заведомо заземленной поверхности), а конец другого соединяется с идентифицируемой жилой кабеля. Чтобы получить результат, придется подождать пять-десять минут. Если по прошествии указанного времени на срезе картофелины образовалось темное пятно, значит вы проверяли фазный проводник. Если изменений не произошло – нулевой.

Важно! Последние два из вышеописанных методов идентификации функционала токоведущих проводников кабеля системы электроснабжения вы используете на свой страх и риск. При работе с такого рода конструкциями следует соблюдать предельную осторожность, чтобы не получить поражение электрическим током.

Разобравшись с тем, что такое фаза и ноль в электричестве, а также найдя для себя сразу несколько ответов на вопрос, как найти эти самые фазу и ноль в проводке, вы можете выбрать любой подходящий для вас способ. Тем не менее, для того, чтобы проверить фазу и ноль, рекомендуем вам такие методы, как проверка тестером либо специализированной отверткой.

Как определить фазу, ноль и землю: правила, способы, советы

Современные отвертки-индикаторы избавят от головной боли человека, пытающегося осмыслить, как определить фазу, ноль, землю. Замечены сложности, расскажем ниже. Для тестирования применяется сигнал, генерируемый отверткой. Понятно, внутри стоят батарейки. Старая советская отвертка-индикатор на базе единственной газоразрядной лампочки негодна. Позволит безошибочно определить фазу. Следовательно, другая цепь – ноль или земля.

Правильно определить фазу

Провода трехжильные

Начнем терминами. Слова ноль русский язык лишен. Зато употреблялось обиходом за счет легкого произношения. Ноль – искаженный нуль, восходящий корнями к латинскому языку. Программист знает: под термином NULL принято подразумевать пустые, неопределенные переменные (лишенные типа). Иногда вид данных удобен для составления алгоритмов (при передаче значений функции).

Теперь попробуем найти фазу. Типичная отвертка-индикатор образована стальным щупом, вслед идет высокоомное сопротивление (к примеру, углерода), ограничивающее ток, источником света выступает газоразрядная лампочка малого размера. Мелочи, но незнающие термина контактная кнопка, определить ноль бессильны. На конце ручки отвертки-индикатора металлическая площадка. Это контактная кнопка, которую потрудитесь касаться пальцем. Иначе лампочка при прикосновении к фазе светиться откажется.

Объясним происходящее. Тело человека наделено емкостью. Не столь велика, хватает пропустить мизерный ток. Фаза начинает колебания, электроны идут в сеть и обратно. Создается небольшой ток. Размер сильно ограничен резистором, убиться, взявшись рукой за контактную площадку отвертки-индикатора, другой за трубу снабжения водой непросто. Обнаружить при помощи инструмента непосредственно землю невозможно.

Обнаружение фазы имеет основополагающее значение, напряжение не должно выходить на патрон люстры при выключенном выключателе. В противном случае обычный процесс замены лампочки может стать опасным, последним. По нормативам, фаза розетки слева. Если выключатели стоят, как принято (включается нажатием вверх), способы определения фазы вырождаются умением найти левую руку, понять, где находится низ:

  1. В розетке фаза занимает левое гнездо. Соответственно, правое считается нулем. Остается провод, изоляция желто-зеленая – земля (в противном случае – резервный провод питания напряжением 220 вольт).

    Неверное положение нуля и фазы евророзетки

  2. В двойном выключателе входные, выходные контакты разнесены по разную сторону. Одни находятся внизу, другие – наверху. Бок, где один-единственный контакт, станет фазой. Два других, соответственно, – нулевым проводом (рабочий плюс защитный). Подразумевается, разводка электрики квартиры сделана верно, в старых домах часть раскладки верна, другая выполнена наоборот.
  3. Для одинарного выключателя столь просто определить фазу не получится, контакты лежат на одном боку (хотя если есть исключение, нуль находится снизу, если выполнены условия, указанные выше). Допускается попросту прозвонить тестером патрон. Сразу говорим, это нарушение техники безопасности, и прибор может сломаться. Поэтому рекомендовать метод штатным не можем. Попробуйте измерить переменное напряжение: 230 вольт окажется лишь меж двумя точками: фаза выключателя и нуль патрона.

Определение положения фазы по цвету изоляции жил провода

Нулевой рабочий провод снабжен синей изоляцией, земля желто-зеленая. Соответственно, на фазу приходится красный (коричневый) цвет. Правило может грубо нарушаться. Дома старой застройки часто оснащались проводами двух жил. Цвет изоляции в каждом случае белый. Отдельные устройства, наподобие датчиков освещенности или движения, имеют другую раскладку. К примеру, нулевой провод черный. Здесь приготовьтесь смотреть руководство по эксплуатации, вариантов раскладки бесчисленное количество.

Найти нулевой провод в квартире

По правилам, корпус подъездного щитка заземлен. Выполняется при помощи солидных размеров клеммы, затянутой мощным болтом в домах старой постройки, жителям современных зданий проще ориентироваться количеством жил. Нулевая шина имеет самое большое число подключений, фазы разводятся по квартирам (добрые электрики вешают стикеры А, В, С; злые – не вешают). Легко проследим по раскладке автоматов защиты, счетчиков.

Штекер 230 вольт Великобритании

В каждом случае общий провод будет нулевым. Цвет не играет решающей роли. Хотя по нормам современные кабели снабжены разукрашенной изоляцией. Обратите внимание – если в доме обустроено заземление, жил на входе минимум 5. Корпус щитка сажается на желто-зеленую. Нулевой провод послужит отводу рабочего тока от приборов (замыкает цепь). Объединение ветвей на стороне потребителя запрещено. Вот тройка правил, помогающих разобраться в подъездном щитке (обратите внимание, по правилам, жилец туда не должен казать носу вовсе – предупредили):

  • Автомат защиты рвет фазу. Встречаются двухполюсные модели, используются сравнительно редко для помещений с особой опасностью (санузел). Поэтому по положению провода удастся сказать: это фаза. Потом стоит автомат вырубить, жилу прозвонить на стороне квартиры. Однозначно даст положение фазы.
  • Напряжение меж нулевым проводом, любой фазой составляет 230 вольт. По ключевому признаку выделим жилу, на другую дающая указанную разницу. Разброс меж фазами составляет 400 вольт. Значения процентов на 10 выше, российские сети стараются соответствовать европейским стандартам.
  • Токовыми клещами измерим значения на жилах. По каждой фазе проявится значение, сумма которых (по трем) должна течь обратно в сеть по нулевому (либо подходящему фазному). Заземление редко используется, ток здесь близкий нулевому при равномерной загрузке веток. Место, где значение больше всего, традиционно является нулевым проводником.
  • Клемма заземления распределительного щитка на виду. Признаку поможет найти нулевой провод в домах с NT-C-S. В других случаях сюда подводится заземление.

Дополнительные сведения о нахождении земли, фазы, нулевого провода

Напоминаем, рассматривались случаи, когда под рукой нет отвертки-индикатора, зато присутствуют токовые клещи, мультиметр. Затем до входа в квартиру обнаруживают землю, фазу, нулевой провод, домашняя сеть прозванивается. Жилы три, методика лежит на поверхности: меж фазой и другим проводом разность потенциалов составит 230 вольт. Обратите внимание, методика непригодна в других случаях. К примеру, разница напряжений меж двумя одинаковыми фазными жилами составляет круглый нуль. Тестером измерить и определить сложно.

Добавим другой способ – промышленностью запрещен. Лампочка в патроне с двумя оголенными проводами. При помощи инструмента находят фазу, возможно жилу замыкать на заземление. Нельзя использовать водопроводные, газовые, канализационные трубы, прочие инженерные конструкции. По правилам, оплетка кабельной антенны снабжена занулением (заземлением). Относительно нее допустимо тестером (запрещенной стандартами лампочкой в патроне) находить фазу.

Для решительных людей порекомендуем пожарные лестницы, стальные шины громоотводов. Нужно зачистить металл до блеска, звонить на участок фазу. Обратите внимание, далеко не все пожарные лестницы заземлены (хотя обязаны быть), шины громоотводов 100%. Если обнаружите столь вопиющий произвол, обратитесь в управляющие организации, при отсутствии реакции – сообщите государственным инстанциям. Указывайте нарушение правил защитного зануления зданий.

Современные отвертки-индикаторы определения фазы, нулевого провода, земли

Когда нельзя понять, какого цвета провода, полезно пользоваться отверткой-индикатором. Инструкция диковинки на батарейках говорит: удастся при помощи щупа найти землю. Спешим огорчить читателей – любой длинный проводник определяется ложно. Разорванная в области пробок фаза, нулевой провод, настоящая земля – ответ один. Не каждая отвертка-индикатор способна выполнять функции одинаково эффективно. Смысл операции следующий:

Отвертка-индикатор

  • Активная отвертка-индикатор способна обнаружить длинный проводник путем излучения туда сигнала, ловли отклика.
  • На практике при плохом качестве контактов волна быстро затухает. Отвертка-индикатор показывает наличие земли на разомкнутой пробке фазы.
  • Для определения земли существует условие – нужно пальцем коснуться контактной площадки. В этом разница меж активной и пассивной отвертками-индикаторами. В первой возможно по этому принципу найти фазу, во второй правильное определение происходит при условии отсутствия контакта с данной областью.

Современная отвертка-индикатор на расстоянии позволит судить, течет ли по проводу ток. Существует специальный дистанционный режим. Обычно даже два: повышенной и пониженной чувствительности. Позволит отсеять неиспользуемую часть проводки. Допустим, известны случаи: строители заводили в дом две фазы вместо одной, путали местами. Пользоваться проводкой нужно с большой осторожностью.

Хочется отметить, на практике измерить сопротивление проводки, прозвонить непросто. Гораздо удобнее определять наличие фазы. Нет опасности сжечь китайский тестер (бывает временами при попытках измерить сопротивление жилы под током). Следует также знать, низкоомные цепи определяются с ошибкой. К примеру, большинство тестеров при прямом замыкании щупов не дают нуль шкалы. Зато если не получится определить землю при помощи активной отвертки-индикатора, плохие контакты – запросто. Если при выключенных пробках огонек горит с пальцем, прижатым к контактной площадке, время задуматься о покупке нового автомата распределительной коробки, скрутки замените современными колпачками.

Часто занимающимся ремонтом рекомендуем выход из положения: маркировка проводов. Лучше делать краской принтера, цвета примерно совпадают:

  1. Красный – фаза.
  2. Синий – нулевой провод.
  3. Желтый – земля.

Обычно водорастворимая краска смывается с трудом. Цвета электрических проводов допустимо проставить колерами принтеров. Приведенная выше система не одинока, часто встречается. В продаже найдем черный цвет. Можете использовать, как заблагорассудится. Обозначение проводов выполняется один раз навсегда. Смыть маркировку проще концентрированной уксусной кислотой, вещество понадобится вознамерившимся отчистить руки (не всегда просто выходит на практике). Напоследок – старайтесь не заляпать одежду.

Как определить где фаза ноль и земля

Современные отвертки-индикаторы избавят от головной боли человека, пытающегося осмыслить, как определить фазу, ноль, землю. Замечены сложности, расскажем ниже. Для тестирования применяется сигнал, генерируемый отверткой. Понятно, внутри стоят батарейки. Старая советская отвертка-индикатор на базе единственной газоразрядной лампочки негодна. Позволит безошибочно определить фазу. Следовательно, другая цепь – ноль или земля.

Правильно определить фазу

Начнем терминами. Слова ноль русский язык лишен. Зато употреблялось обиходом за счет легкого произношения. Ноль – искаженный нуль, восходящий корнями к латинскому языку. Программист знает: под термином NULL принято подразумевать пустые, неопределенные переменные (лишенные типа). Иногда вид данных удобен для составления алгоритмов (при передаче значений функции).

Теперь попробуем найти фазу. Типичная отвертка-индикатор образована стальным щупом, вслед идет высокоомное сопротивление (к примеру, углерода), ограничивающее ток, источником света выступает газоразрядная лампочка малого размера. Мелочи, но незнающие термина контактная кнопка, определить ноль бессильны. На конце ручки отвертки-индикатора металлическая площадка. Это контактная кнопка, которую потрудитесь касаться пальцем. Иначе лампочка при прикосновении к фазе светиться откажется.

Объясним происходящее. Тело человека наделено емкостью. Не столь велика, хватает пропустить мизерный ток. Фаза начинает колебания, электроны идут в сеть и обратно. Создается небольшой ток. Размер сильно ограничен резистором, убиться, взявшись рукой за контактную площадку отвертки-индикатора, другой за трубу снабжения водой непросто. Обнаружить при помощи инструмента непосредственно землю невозможно.

Обнаружение фазы имеет основополагающее значение, напряжение не должно выходить на патрон люстры при выключенном выключателе. В противном случае обычный процесс замены лампочки может стать опасным, последним. По нормативам, фаза розетки слева. Если выключатели стоят, как принято (включается нажатием вверх), способы определения фазы вырождаются умением найти левую руку, понять, где находится низ:

    В розетке фаза занимает левое гнездо. Соответственно, правое считается нулем. Остается провод, изоляция желто-зеленая – земля (в противном случае – резервный провод питания напряжением 220 вольт).

Неверное положение нуля и фазы евророзетки

Определение положения фазы по цвету изоляции жил провода

Нулевой рабочий провод снабжен синей изоляцией, земля желто-зеленая. Соответственно, на фазу приходится красный (коричневый) цвет. Правило может грубо нарушаться. Дома старой застройки часто оснащались проводами двух жил. Цвет изоляции в каждом случае белый. Отдельные устройства, наподобие датчиков освещенности или движения, имеют другую раскладку. К примеру, нулевой провод черный. Здесь приготовьтесь смотреть руководство по эксплуатации, вариантов раскладки бесчисленное количество.

Найти нулевой провод в квартире

По правилам, корпус подъездного щитка заземлен. Выполняется при помощи солидных размеров клеммы, затянутой мощным болтом в домах старой постройки, жителям современных зданий проще ориентироваться количеством жил. Нулевая шина имеет самое большое число подключений, фазы разводятся по квартирам (добрые электрики вешают стикеры А, В, С; злые – не вешают). Легко проследим по раскладке автоматов защиты, счетчиков.

Штекер 230 вольт Великобритании

В каждом случае общий провод будет нулевым. Цвет не играет решающей роли. Хотя по нормам современные кабели снабжены разукрашенной изоляцией. Обратите внимание – если в доме обустроено заземление, жил на входе минимум 5. Корпус щитка сажается на желто-зеленую. Нулевой провод послужит отводу рабочего тока от приборов (замыкает цепь). Объединение ветвей на стороне потребителя запрещено. Вот тройка правил, помогающих разобраться в подъездном щитке (обратите внимание, по правилам, жилец туда не должен казать носу вовсе – предупредили):

  • Автомат защиты рвет фазу. Встречаются двухполюсные модели, используются сравнительно редко для помещений с особой опасностью (санузел). Поэтому по положению провода удастся сказать: это фаза. Потом стоит автомат вырубить, жилу прозвонить на стороне квартиры. Однозначно даст положение фазы.
  • Напряжение меж нулевым проводом, любой фазой составляет 230 вольт. По ключевому признаку выделим жилу, на другую дающая указанную разницу. Разброс меж фазами составляет 400 вольт. Значения процентов на 10 выше, российские сети стараются соответствовать европейским стандартам.
  • Токовыми клещами измерим значения на жилах. По каждой фазе проявится значение, сумма которых (по трем) должна течь обратно в сеть по нулевому (либо подходящему фазному). Заземление редко используется, ток здесь близкий нулевому при равномерной загрузке веток. Место, где значение больше всего, традиционно является нулевым проводником.
  • Клемма заземления распределительного щитка на виду. Признаку поможет найти нулевой провод в домах с NT-C-S. В других случаях сюда подводится заземление.

Дополнительные сведения о нахождении земли, фазы, нулевого провода

Напоминаем, рассматривались случаи, когда под рукой нет отвертки-индикатора, зато присутствуют токовые клещи, мультиметр. Затем до входа в квартиру обнаруживают землю, фазу, нулевой провод, домашняя сеть прозванивается. Жилы три, методика лежит на поверхности: меж фазой и другим проводом разность потенциалов составит 230 вольт. Обратите внимание, методика непригодна в других случаях. К примеру, разница напряжений меж двумя одинаковыми фазными жилами составляет круглый нуль. Тестером измерить и определить сложно.

Добавим другой способ – промышленностью запрещен. Лампочка в патроне с двумя оголенными проводами. При помощи инструмента находят фазу, возможно жилу замыкать на заземление. Нельзя использовать водопроводные, газовые, канализационные трубы, прочие инженерные конструкции. По правилам, оплетка кабельной антенны снабжена занулением (заземлением). Относительно нее допустимо тестером (запрещенной стандартами лампочкой в патроне) находить фазу.

Для решительных людей порекомендуем пожарные лестницы, стальные шины громоотводов. Нужно зачистить металл до блеска, звонить на участок фазу. Обратите внимание, далеко не все пожарные лестницы заземлены (хотя обязаны быть), шины громоотводов 100%. Если обнаружите столь вопиющий произвол, обратитесь в управляющие организации, при отсутствии реакции – сообщите государственным инстанциям. Указывайте нарушение правил защитного зануления зданий.

Современные отвертки-индикаторы определения фазы, нулевого провода, земли

Когда нельзя понять, какого цвета провода, полезно пользоваться отверткой-индикатором. Инструкция диковинки на батарейках говорит: удастся при помощи щупа найти землю. Спешим огорчить читателей – любой длинный проводник определяется ложно. Разорванная в области пробок фаза, нулевой провод, настоящая земля – ответ один. Не каждая отвертка-индикатор способна выполнять функции одинаково эффективно. Смысл операции следующий:

  • Активная отвертка-индикатор способна обнаружить длинный проводник путем излучения туда сигнала, ловли отклика.
  • На практике при плохом качестве контактов волна быстро затухает. Отвертка-индикатор показывает наличие земли на разомкнутой пробке фазы.
  • Для определения земли существует условие – нужно пальцем коснуться контактной площадки. В этом разница меж активной и пассивной отвертками-индикаторами. В первой возможно по этому принципу найти фазу, во второй правильное определение происходит при условии отсутствия контакта с данной областью.

Современная отвертка-индикатор на расстоянии позволит судить, течет ли по проводу ток. Существует специальный дистанционный режим. Обычно даже два: повышенной и пониженной чувствительности. Позволит отсеять неиспользуемую часть проводки. Допустим, известны случаи: строители заводили в дом две фазы вместо одной, путали местами. Пользоваться проводкой нужно с большой осторожностью.

Хочется отметить, на практике измерить сопротивление проводки, прозвонить непросто. Гораздо удобнее определять наличие фазы. Нет опасности сжечь китайский тестер (бывает временами при попытках измерить сопротивление жилы под током). Следует также знать, низкоомные цепи определяются с ошибкой. К примеру, большинство тестеров при прямом замыкании щупов не дают нуль шкалы. Зато если не получится определить землю при помощи активной отвертки-индикатора, плохие контакты – запросто. Если при выключенных пробках огонек горит с пальцем, прижатым к контактной площадке, время задуматься о покупке нового автомата распределительной коробки, скрутки замените современными колпачками.

Часто занимающимся ремонтом рекомендуем выход из положения: маркировка проводов. Лучше делать краской принтера, цвета примерно совпадают:

  1. Красный – фаза.
  2. Синий – нулевой провод.
  3. Желтый – земля.

Обычно водорастворимая краска смывается с трудом. Цвета электрических проводов допустимо проставить колерами принтеров. Приведенная выше система не одинока, часто встречается. В продаже найдем черный цвет. Можете использовать, как заблагорассудится. Обозначение проводов выполняется один раз навсегда. Смыть маркировку проще концентрированной уксусной кислотой, вещество понадобится вознамерившимся отчистить руки (не всегда просто выходит на практике). Напоследок – старайтесь не заляпать одежду.

Любой человек, занимаясь электромонтажными работами у себя дома или просто решивший установить люстру, бра или подключить розетку, обязательно столкнется с вопросом – как определить фазу, ноль и заземление у проводов , в месте монтажа?

В наших статьях и инструкциях, мы часто выкладываем схемы подключения, правила монтажа и подсоединения электрооборудования к сети, а также многое другое, где для правильного выполнения всех операций необходимо знать, где у вас фазный провод, где нулевой (рабочий ноль), а где заземляющий (защитный ноль). Для опытного электрика определить где фаза и ноль или найти землю, обычно не составляет труда, а вот как быть остальным?

Давайте попробуем разобраться, как в домашних условиях, не обладая сложными специализированными измерительными инструментами и электронными приборами, самому определить где фаза, где ноль, а где земля в проводке .

Из всех известных методов, наиболее простого определения фазы и ноля, мы отобрали самые, по нашему мнению, доступные в реализации и в то же время безопасные. По этой причине, в статье вы не увидите советов – как найти фазу с помощью картошки или же призывов к кратковременному касанию проводов различными частями тела.

Маркировка проводов по цвету

Действительно, самый простой способ определить фазу, ноль и землю у электрического провода, это посмотреть цветовую маркировку и сравнить с принятым стандартом. Каждая жила в современных проводах, применяемых в электропроводке, а также электрооборудовании имеет индивидуальную расцветку. Зная какому цвету жил какая соответствует функция (фаза, ноль или заземление), легко можно выполнять дальнейший монтаж.

Довольно часто, этого вполне достаточно, особенно в случаях, когда установка производится в новостройках или местах с довольно новой электропроводкой, сделанной профессиональными, компетентными электромонтажниками по всем современным правилам и стандартам.

Согласно этому стандарту для квартирной электросети:

Рабочий ноль (нейтраль или ноль) – Синий провод или сине-белый

Защитный ноль (земля или заземление) – желто-зеленый провод

Фаза – Все остальные цвета среди которых – черный, белый, коричневый , красный и т.д.

Теперь, зная стандарт цветовой маркировки проводов, вы сможете без труда определять, какой провод какую функцию выполняет . Это касается большинства случаев, исключение могут составлять провода, подходящие к выключателям, переключателям и т.д., в силу принципиально иной схемы работы этого электрооборудования.

КАК САМОМУ ОПРЕДЕЛИТЬ ФАЗУ, НОЛЬ и ЗАЗЕМЛЕНИЕ У ПРОВОДОВ

Итак, начнем по порядку:

ОПРЕДЕЛЕНИЕ ФАЗЫ

Для большего удобства, сперва всегда лучше определять какой из имеющихся проводов фаза. О том, как найти фазу цифровым мультиметром мы уже писали, а как быть если его нет, читайте ниже.

ОПРЕДЕЛЕНИЕ ФАЗЫ ИНДИКАТОРНОЙ ОТВЕРТКОЙ

Самый простой способ обнаружения фазного провода – это поиск с помощью индикаторной отвертки. Этот простейший инструмент должен быть у любого домашнего мастера, занимающегося электрикой в квартире – будь то полный электромонтаж, простая замена ламп или установка светильников, розеток и выключателей.

Принцип работы индикаторной отвертки прост – при касании жалом отвертки проводника под напряжением и одновременном касании контакта, на задней стороне отвертки, пальцем руки – загорается индикаторная лампа в корпусе инструмента, которая и сигнализирует о наличии напряжения. Таким образом легко можно узнать, какой провод фазный.

Принцип действия индикаторной отвертки прост – внутри индикаторной отвертки расположена лампа и сопротивление(резистор), при замыкании цепи (касании нами заднего контакта) лампа загорается. Сопротивление защищает нас от поражения электрическим током, оно снижает ток до минимального, безопасного уровня.

ОПРЕДЕЛЕНИЕ ФАЗЫ, НУЛЯ И ЗАЗЕМЛЕНИЯ КОНТРОЛЬНОЙ ЛАМПОЙ

Еще один способ, которым можно определить фазный, нулевой и провод заземления в современной трехпроводной электрической сети, это использование контрольной лампы . Способ неоднозначный, но действенный, требующий особой осторожности.

Чтоб начать определение, в первую очередь необходимо собрать само устройство контрольной лампы. Самый простой способ использовать патрон, с вкрученной туда лампой, а в клеммах патрона закрепить провода со снятой на концах изоляцией. Если же под рукой нет электрического патрона или нет времени что-то мастерить, можно воспользоваться обычной настольной лампой с электрической вилкой.

Технология определения фазы, нули и земли с помощью контрольной лампы максимально проста – поочередно соединяя провода лампы к проводам требующим определения, каждый с каждым.

Определить фазу и ноль из двух проводов

В случае определения контрольной лампой фазного провода среди двух проводов вы лишь сможете узнать, есть фаза или нет, а какой именно из проводников фазный определить не удастся. Если при соединении проводов контрольной лампы к определяемым жилам она загорится, то значит один из проводов фазный, а второй скорее всего ноль. Если же не загорится, то скорее всего фазы среди них нет, либо нет нуля, чего тоже исключать нельзя.

Таким способом, скорее, удобнее проверять работоспособность проводки и правильность её монтажа. Определять фазу лучше индикаторной отверткой, а вот наличие нуля узнавать так.

Определить фазный провод в таком случае можно подключив один из концов, идущих от контрольной лампы, к заведомо известному нулю (например, к соответствующей клемме в электрощите), тогда при касании вторым концом к фазному проводнику, лампа загорится. Оставшийся провод соответственно ноль.

Найти фазу, ноль и заземление из трех проводов:

В такой трехпроводной системе часто возможно точно определить фазный, нулевой и заземляющий провод контрольной лампой.
Соединяем контакты, идущие от контрольной лампы поочередно к жилам требующего определения кабеля.

Действуем методом исключения:

Находим положение, в котором лампа горит, это будет значить, что один из проводов фаза, а другой ноль.

После чего меняем положение одного из контактов контрольной лампы, далее возможны несколько вариантов:

– Если лампа не загорится (при наличии УЗО или дифференциального автомата защиты проверяемой линии они также могут сработать) значит оставшийся свободным провод – ФАЗА, а проверяемые НОЛЬ и ЗЕМЛЯ.

– Если после смены положения лампа ненадолго вспыхнет , при этом сразу сработает УЗО или диф. автомат (если они есть), значит оставшийся свободным провод – НОЛЬ, а проверяемые это ФАЗА и ЗАЗЕМЛЕНИЕ.

– Если линия не защищена устройством защитного отключения (УЗО) или дифференциальным автоматом, и свет будет гореть в двух положениях . В этом случае узнать какой провод рабочий ноль (нуль), а какой защитный (заземление), можно просто отключив в щите учета и распределения электроэнергии вводной кабель от клеммы заземления. После чего так же проверить контрольной лампой все жилы и, опять же методом исключения, в положении, когда лампа не горит опознать проводник заземления.

Как видите, в различных ситуациях, при разных схемах электропроводки, реализованных в квартире, способы и методы определения нуля, фазы и заземления меняются. Если вы столкнулись с ситуацией, не описанной в этой статье, обязательно пишите в комментариях к статье, мы постараемся вам помочь.

А если вы знаете еще, простые способы того, как в домашних условиях, без специализированного инструмента определить фазу, ноль и землю, пишите в комментариях . Статья будет обязательно дополнена. Главное требование, к методам определения, это простота, возможность обойтись в поиске лишь подручными, бытовыми средствами, имеющимися у многих.

Использование индикаторной отвертки

Последовательность действий зависит от того, какая система проводки смонтирована в помещении. Рассмотрим правила определения фазного и нулевого провода в разных случаях.

Двухпроводная сеть

Этот вариант электропроводки встречается в старых домах. По современной терминологии данная система обозначается TN-C. Суть ее заключается в том, что нулевой рабочий провод, заземленный на питающей подстанции, совмещает роль защитного заземляющего (PEN). В системе IT также присутствует только фазный и рабочий нулевой проводник, но в обычных жилых и производственных помещениях она не применяется. В двухпроводной сети отдельный заземляющий провод просто отсутствует, то есть, имеется только фаза и ноль. Определить их очень просто: прикасаемся индикатором последовательно к каждой из токоведущих жил, фаза вызывает зажигание индикаторной лампы, как показано на фото ниже:

Система является устаревшей. На вилке любого современного электроприбора имеется три клеммы. Проводка должна выполняться трехпроводной, исключение — группа освещения.

Трехпроводная сеть

В этом варианте, в дом или квартиру заходит три провода. Такие сети имеют несколько разновидностей. В системе TN-S рабочий ноль и защитное заземление раздельно идут от питающей подстанции, где оба соединены с рабочим заземлением. При таком типе проводки, определение назначения проводов можно осуществить следующим образом:

  • в щитке или в распределительной коробке индикатором определить провод, на котором присутствует фаза;
  • два оставшихся – это рабочий и защитный ноль (земля), отсоединяем на щитке один провод из них;
  • если отсоединить рабочий ноль, все электрооборудование в квартире перестанет работать, значит, оставшийся проводник – это земля, или защитное заземление.

Теперь остается определить в розетке среди трех проводов, на котором из них фаза, ноль и земля. Если не удается найти по цвету изоляции, определение их функций может быть выполнено подручными средствами, без приборов. Для этого нужно взять патрон с вкрученной лампой и выведенными наружу проводами. Определение проводим следующим образом. Одним проводником от патрона прикасаемся к фазному проводу (фаза уже найдена с помощью индикатора), вторым поочередно прикасаемся к двум оставшимся. Если на щитке отключен рабочий ноль, лампа зажжется только при соединении с защитным заземлением, и наоборот.

На видео ниже наглядно показывается, как определить фазу, ноль и землю индикаторной отверткой:

Другой разновидностью системы TN является разводка TN-C-S. В этом случае нулевой провод расщепляется на рабочий ноль и защитное заземление на вводе в дом. Здесь, чтобы определить назначение проводников, можно применить последовательность действий, описанную для системы TN-S. Добавляется дополнительная возможность, обследовав место разделения PEN, определить, где рабочий и защитный ноль (земля) по сечению жилы в проводе.

В случае, если заземление выполнено по системе TT, объект (частный дом) имеет собственное заземляющее устройство, от которого выполнена разводка защитного заземления. В этих условиях, как правило, определить фазу, ноль и землю можно путем отслеживания заземляющего проводника по трассе его прокладки.

Определение мультиметром или тестером

Начнем с того, что определить фазу лучше всего с помощью отвертки, совмещенной с индикатором. Будем исходить из того, что если в хозяйстве есть мультиметр, индикатор найдется наверняка. В крайнем случае, можно сделать следующее. В некоторых случаях может помочь определение с помощью мультиметра напряжения между проводом и трубой отопления или водоснабжения. К сожалению, результат здесь не всегда предсказуем. Чаще всего, напряжение между фазой и системой отопления близко к 220 В, во всяком случае, оно должно быть выше, чем между тем же отоплением и нулем. Картина может измениться, например, если вороватый сосед использует трубы отопления как рабочее заземление.

В трехпроводных схемах мультиметр покажет рабочее напряжение между проводником, на который подана фаза и любым из двух других. Определение, какой ноль рабочий, а какой – земля, можно проводить по методике, изложенной выше, то есть, отсоединив на щитке один из приходящих нулей и воспользовавшись контрольной лампой.

О чем еще важно знать?

Иногда определение назначения токоведущих жил может быть облегчено благодаря знанию их общепринятой цветовой маркировки:

  • Ноль может маркироваться латинской буквой N. Общепринятый цвет изоляции – голубой или синий. Другой вариант окраски изоляции – белая полоса на синем фоне.
  • Земля маркируется латиницей PE. В системе заземления, объединяющей функции защитного и рабочего нуля, обозначается PEN. Цвет применяемой изоляции – желтый, имеющий одну или две полосы ярко – зеленого оттенка.
  • Фаза может обозначаться латинской буквой L или маркироваться как фаза трехфазной электрической сети, то есть A, B или C. Цвет изоляции может быть произвольный, но не повторяющий тех, которыми обозначается земля (защитное заземление) или нулевой проводник. В большинстве случаев, это красный, коричневый или черный цвет.

Полезно знать и правила монтажа электропроводки. Это также может помочь определить, где фаза, ноль и земля. Фаза всегда должна приходить в распределительный щиток на автоматический выключатель или плавкий предохранитель. Нулевая жила может крепиться на шине специальной конструкции, которая имеет несколько клемм. В металлических щитках и клеммных ящиках старого типа, ноль или земля крепились под гайку болтом, приваренным к корпусу ящика. Эти правила могут облегчить определение функций приходящих проводников. Узнать больше о том, как определить фазу и ноль без приборов, вы можете из нашей отдельной статьи.

Теперь вы знаете, как определить фазу, ноль и землю мультиметром или же индикаторной отверткой. Надеемся, предоставленные рекомендации помогли вам решить вопрос самостоятельно!

Наверняка вы не знаете:

Нова Лiнiя — Новости

Если у вас есть опыт работы с электрикой, люстру можно повесить самостоятельно.

Для работы потребуются стремянка, отвертка-индикатор, пассатижи, отвертка с тонким жалом, кусачки и монтажный блок с зажимами для проводов. Если в комнате недостаточно естественного освещения, при работе можно воспользоваться фонариком, работающим от батареек.

1. Подготовка крюка
Заранее подготовленный крючок, на который будет подвешиваться люстра, проверяется на прочность. Затем крюк изолируют двумя слоями изоленты.

ВАЖНО!!!
 —  установка любых осветительных приборов производится в соответствии с инструкцией производителя этих приборов.Такая инструкция, как правило, прилагается к светильнику;
 — если конструкция устройства предполагает заземление, оно должно быть обязательно подключено.

2. Подготовка проводов
Выключается автоматический выключатель (в счетчике), расположенный на лестничной площадке. Отсутствие напряжения в сети проверяется индикаторной отверткой. На потолке отыскиваются три конца провода: один из них «нуль», другие два  — фазные. Следует знать, что «нуль» направляется в монтажную коробку, а фазные выводятся на выключатель. Со всех трех проводов на потолке снимается изоляция. Проводки разводятся в разные стороны так, чтобы не замыкались.
 
ВАЖНО!!!
  — чтобы убедиться, что напряжения в сети нет, включите свет в той комнате, где собираетесь вешать люстру; 
  — снимая изоляцию с проводков, помните, что длина кончика оголенного провода должна быть около 3-4 мм.

3. Определение фаз потолочных проводов
Чтобы определить, какие из проводов «нуль», а какие фазные, нужно снова включить электричество и выключатель в комнате. До каждого из проводов надо по очереди дотронуться индикаторной отверткой. Если индикатор загорается, значит, провод — фаза, если не загорается, значит это — «нуль». Определив «нуль», желательно пометить его изоляцией, чтобы не забыть.

ВАЖНО!!!
По новым правилам устройства электроустановок провода по всей длине должны иметь цветную маркировку:
Черный/коричневый — фаза
Синий — нуль
Желтый/зеленый — защитное заземление

4. Определение фаз проводов люстры
У люстры так же должна быть маркировка проводов. Если маркировки нет, необходимо определить «нуль» и фазы у люстры, три провода которой проложены в трубках устройства и выведены на клемную коробку. Именно через нее светильник будет подключаться к электропроводке. Коробка обычно «спрятана» под декоративным патроном светильника. Поочередно  включаются в розетку два любых провода люстры, до третьего при этом дотрагиваться не надо. Когда загорится одна половина ламп, запоминаем провода, которые были включены в розетку. После чего один из них оставляем в розетке, а другой меняем местами с неподключенным: должна загореться другая половина ламп. Если эти лампы не загорелись, снова меняем провода. В результате манипуляций должно получиться так, чтобы один провод всегда был в розетке, а два других провода, поочередно включаясь в сеть, зажигали «свои» ряды ламп. Тот провод, который при этих действиях все время остается в розетке, как раз и является «нулевым».
 
ВАЖНО!!!
  — подсоединение к сети производится только при обесточенных проводах!

5. Установка и подсоединение люстры
Люстра аккуратно вешается на крюк. «Нулевой» провод на потолке соединяется с «нулевым» на люстре. Фазные провода с потолка и из лампы тоже соединяются друг с другом.

ВАЖНО!!!
 —  скручивать друг с другом медный и алюминиевый провод нельзя! Два этих металла образуют электронную пару, способствующую разрушению контакта. В качестве соединителя медного провода с алюминиевым необходимо использоватьспециальную колодку, которая прикручивает провода винтами через втулку.
— если вам не нравится, что выключатель зажигает сначала основное освещение люстры, а потом малое, достаточно поменять местами фазные концы на выключателе или на люстре.

6. Проверка работы
Перед тем как завинтить защитно-декоративный колпачок у основания люстры, следует проверить качество своей работы.  Люстра должна нормально включаться и не искрить. Колпак завинчивается — значит, люстра установлена!

 

Что такое ток нулевой последовательности? Определение и объяснение

Определение: Несбалансированный ток, протекающий в цепи во время замыкания на землю, известен как ток нулевой последовательности или постоянная составляющая тока короткого замыкания. Нулевая последовательность фаз означает, что величина трех фаз имеет нулевое смещение фаз. линии представляют ток нулевой последовательности, и он обнаруживается путем сложения вектора трехфазного тока. Уравнение ниже выражает ток нулевой последовательности,

Обмотка, соединенная треугольником

Обмотка, соединенная треугольником, показана на рисунке ниже.Ток нулевой последовательности фаз a, b и c равны по величине и синфазны друг с другом. Он циркулирует в фазных обмотках соединения треугольником, как показано на рисунке ниже. Токи нулевой последовательности возникают из-за наличия напряжения нулевой последовательности.

По KCL в узле a получаем

Аналогичным образом, применяя KCL в узлах B и C, мы получаем

Приведенное выше уравнение показывает, что в соединении треугольником отсутствует ток нулевой последовательности из-за отсутствия обратных путей этого тока.

Поскольку в линии нет обратного пути для тока нулевой последовательности, полное сопротивление цепи становится бесконечным. Это бесконечное сопротивление показано разомкнутой цепью в точке P в однофазной эквивалентной цепи нулевой последовательности для схемы, соединенной треугольником. с полным сопротивлением нулевой последовательности Z 0 .

Но для тока нулевой последовательности существует замкнутый путь в схеме треугольника. На это указывает соединение импеданса нулевой последовательности Z 0 с током нулевой последовательности.

Обмотка, соединенная звездой с нейтралью, изолированной от земли

Рассмотрим обмотку, соединенную звездой, без возврата нейтрали, как показано на рисунке ниже.

В данном случае

Приведенное выше уравнение показывает, что ток нулевой последовательности равен нулю в трехфазной трехпроводной системе без нейтрали.

Звезда подключена без нейтрали

На рисунке ниже показана обмотка, соединенная звездой с заземленной нейтралью.

Здесь,

Следовательно,

Приведенное выше уравнение показывает, что для трехфазной системы с заземлением ток нулевой последовательности будет течь как от фазной обмотки, так и по линиям.

Phase Zero Project: формирование конкурентного пространства

Программы

New America Local —

Новая Америка, Калифорния,

Нью-Америка Чикаго

Новая Америка Индианаполис

Программы —

Лаборатория лучшей жизни

Центр образования и труда

Инициатива цифрового воздействия и управления

Образовательная политика

научных сотрудников

Земля и жилье будущего

Будущее время

Международная безопасность

Новая практическая лаборатория

Институт открытых технологий

Политическая реформа

Технология, представляющая общественный интерес

Безопасность ресурсов

Инициатива ответственного распределителя активов

Публикации

Резьба

События

Около

Поддержка New America —

Мы посвящаем себя обновлению обещаний Америки, продолжая стремиться к реализации высших идеалов нашей страны, честно преодолевая проблемы, вызванные быстрыми технологическими и социальными изменениями, и используя возможности, которые эти изменения создают.

О компании —

Наша история

Наши люди

Наше финансирование

Пресс-комната

Работа и стипендии

New America исполняется 20 лет

Пожертвовать

Новая Америка

  • Наша история
  • Публикации
  • Программы
  • События
  • Наши сотрудники
  • Работа и стипендии
  • Пресс
  • Свяжитесь с нами

Новая Америка

740 15th Street NW, Suite 900

Вашингтон, округ Колумбия 20005



Программы

События

Публикации

Подписаться

Creative Commons

Миссия

Люди

Финансирование

Политики и процедуры

Контакт

Работа и стипендии

Пресс

Пожертвовать

Оценка / планирование нулевой фазы

Оценка / Планирование нулевой фазы | Консультанты S&P

Оценка / планирование нулевой фазы

Не можете подготовиться? Приготовьтесь потерпеть неудачу.

Одна из повторяющихся проблем, с которыми мы сталкиваемся с новыми клиентами, — это недостаточная приверженность первоначальному определению объема проекта. Практически все основные — и даже некоторые «второстепенные» проекты HIT имеют сложные зависимости, которые включают внутренние ИТ-ресурсы, время и бюджетные реалии, важную информацию со стороны других загруженных отделов и капризы сторонних поставщиков и консультантов.

Управлять этими взаимозависимостями непросто даже для опытных ИТ-руководителей, не говоря уже об организациях, которые могут столкнуться с этими проектами впервые.

Некоторые из наиболее сложных, но критических задач во время так называемой «нулевой фазы» могут включать:

  • Точная оценка готовности организации, включая активное участие клинических, административных, финансовых и ИТ-заинтересованных сторон
  • Откровенное и всестороннее общение с руководством, гарантирующее, что все понимают — и соглашаются — в полной мере, сколько времени / инвестиций / ресурсов требуются для реализации проекта
  • Тщательные переговоры и тщательная документация с поставщиками для полного (и честного) определения взаимных ожиданий, результатов и непредвиденных обстоятельств
  • Интеллектуальная (продвинутая) подготовка к будущим потребностям вашей организации, гарантирующая, что инвестиции в ИТ, которые вы делаете сегодня, поддержат планы и стратегии завтрашнего дня

Клиенты S&P извлекают выгоду из нашего уникального плана внедрения InTegrity SM , который основан на многолетнем реальном опыте и обеспечивает всеобъемлющую основу для достижения успеха, которая включает в себя ответственность организации, поставщика и консультанта.

Узнайте больше о InTegrity SM и планировании «нулевой фазы» здесь

Членство и отличия

Окружной суд округа Сент-Луис возвращается к «нулевой рабочей фазе» из-за COVID-19 — Суды округа Сент-Луис

Окружной суд округа Сент-Луис
105 South Central Avenue
Clayton, Missouri 63105

ДЛЯ НЕМЕДЛЕННОГО ВЫПУСКА

ул.Окружной суд округа Луис возвращается к «нулевой рабочей фазе» из-за COVID-19

КЛЕЙТОН, Миссури — 23 июля 2020 г. — Окружной суд округа Сент-Луис возвращается к «нулевому рабочему этапу», ограничивая общественный доступ в здание суда после того, как несколько сотрудников дали положительный результат на коронавирус. Решение председательствующего судьи Майкла Д. Бертона означает, что в течение следующих двух недель все личные слушания будут перенесены, а слушания присяжных будут отложены.

Однако суды не закрытые, подчеркнул судья Бертон.Судебные разбирательства и судебные процессы будут продолжаться посредством видеоконференцсвязи. Как всегда, здание суда остается открытым для приема всех документов. Те, кто просит о защите, могут войти в здание, чтобы подать петиции, поскольку Офис по делам о жестоком обращении с взрослыми остается открытым. Тем не менее, петиционерам настоятельно рекомендуется подавать ходатайства о выдаче охранных приказов в Интернете, перейдя на веб-сайт суда по адресу wp.stlcountycourts.com/order-of-protection/. Все должны продолжать носить маски и измерять температуру, прежде чем они смогут войти в здание.

«Суды являются важной государственной службой, и колеса правосудия должны продолжать вращаться», — сказал судья Бертон. «Наши судьи и I.T. сотрудники разработали новаторские способы сделать это удаленно. Тем не менее, в связи с резким ростом числа случаев COVID-19 в округе Сент-Луис и по всему штату, необходимы дополнительные меры предосторожности для защиты здоровья наших сотрудников и населения. Для замедления распространения вируса очень важно максимально сократить личные контакты и плотность в нашем здании.”

Начиная с этой недели суд перейдет к значительно сокращенному штату, при этом как можно больше сотрудников будут работать из дома. Судья Бертон сказал, что даже в этом случае повышенная осторожность важна.

Все сотрудники с положительным диагнозом COVID-19 были помещены на карантин дома, а их рабочие места были продезинфицированы в коммерческих целях. Департамент здравоохранения округа Сент-Луис проводил отслеживание контактов. Предполагается, что никто из сотрудников не заразился вирусом в здании суда, а скорее в результате контактов с общественностью.

В соответствии с постановлением Верховного суда штата Миссури от 4 мая 2020 года судебные органы не могут спешить, чтобы «открыть свои двери» во время этой пандемии. Они должны делать это постепенно. Верховный суд разработал четыре этапа (с нуля по три), чтобы разрешить этот процесс. При определении целесообразности смены этапов Суд предоставил для рассмотрения конкретные «критерии доступа». Бертон и другие лидеры здания суда и сообщества еженедельно обсуждают критерии и этапы работы судебного округа.

Хотя Верховный суд разрешил проведение определенных разбирательств лично даже на нулевой стадии, он не обязал проводить эти слушания лично. Суды города Сент-Луис и округа Сент-Чарльз также ужесточают ограничения на публичный доступ и отменяют личные слушания из-за наличия вируса.

Исполняющая обязанности содиректора Департамента общественного здравоохранения округа Сент-Луис г-жа Спринг Шмидт сообщила суду ранее на этой неделе, что она «крайне обеспокоена» количеством новых случаев COVID-19 в Санкт-Петербурге.Округ Луи из-за увеличения распространения сообщества. Шмидт сказала, что она ожидает, что тенденция к росту продолжится по мере открытия школ.

С начала пандемии в Миссури было подтверждено 33 624 случая заболевания COVID-19; из этих случаев 9 361 (27,8%) были зарегистрированы в округе Сент-Луис, согласно последним данным Департамента здравоохранения и обслуживания пожилых людей Миссури. Из 1132 смертей от COVID-19 в Миссури 610 (58,9%) произошли из округа Сент-Луис. Штат сообщил в среду о самом большом однодневном увеличении числа новых случаев COVID-19 с начала пандемии, в пятый раз штат превысил дневной максимум за последние восемь дней.

###

Для получения дополнительной информации обращайтесь:
Кристин Бертелсон, директор по стратегическим коммуникациям
Окружной суд округа Сент-Луис
105 South Central Avenue
Clayton, MO 63105
[email protected]
314-615-2643 или 314- 202-3400
Свяжитесь с нами в Facebook и Twitter на @StlCountyCourts или посетите наш веб-сайт по адресу www.stlcountycourts.com

A ComicBook.com Подкаст Marvel запускается в пятницу,

(Фото: Phase Zero: A ComicBook.com Marvel Podcast)

В эту пятницу ComicBook.com официально запускает подкаст Phase Zero , серию с записью и выпуском новых эпизодов каждую пятницу, чтобы стать лучшим местом для поклонников комиксов Marvel и кинематографической вселенной Marvel. Phase Zero будет принимать Брэндон Дэвис, авторитет и поклонник в пространстве Marvel, ведущий, продюсер и писатель ComicBook.com с 2015 года. Еженедельно к Дэвису присоединяются сотрудники ComicBook.com, создатели комиксов и кинематографисты. , и актеры, чтобы изучать последние новости о Marvel, выпуски фильмов и телепрограмм и вести разговор в позитивной и восторженной манере.

Phase Zero приглашает вас отпраздновать все, что связано с Marvel, еженедельно устраивая беседы о теориях, предположениях, а также эксклюзивные интервью и идеи. Это место номер один для поклонников MCU, приветствуя новичков и тех, кто думает, что они все это знают! Новые выпуски записываются в прямом эфире на twitch.tv/comicbook, а затем становятся доступными на Apple Podcasts, Spotify, Stitcher, iHeartRadio и везде, где можно найти подкасты. Следите за обновлениями, касающимися подкаста Phase Zero , в официальной учетной записи Phase Zero в Twitter!

Ссылки для прослушивания Phase Zero :

Первый эпизод Phase Zero будет включать эксклюзивное интервью с президентом Marvel Studios Кевином Файги, как ComicBook.com из Джима Вискарди и Джейми Джирака присоединяются, чтобы стать соведущими и глубоко погрузиться в первые два эпизода Marvel’s WandaVision .

«Когда мы запускали ComicBook.com, нашей целью было стать источником для новых фанатов, чтобы сделать их следующие шаги в гикдоме, и местом для стойких фанатов, где они могут узнать больше о том, к чему все идет», — сказал Джим Вискарди, ComicBook. Главный редактор .com. «С приближением начала новой эры кинематографической вселенной Marvel, множество поклонников, как старых, так и новых, хотят узнать, что будет дальше с их любимыми персонажами.Enter, Phase Zero . «

Phase Zero — это последний забавный продукт, предлагаемый ComicBook.com после успешного подкаста ComicBook Nation , организованного Кофи Outlaw и Мэттом Агиларом, Появился подкаст . Меган Питерс, Джим Вискарди и Кристиан Хоффер, а также ежедневные новостные и развлекательные видеосерии Daily Distraction , организованные Крисом Киллианом. Ранее в этом году события Quarantine Watch Party на ComicBook.com стали всемирными трендами в Твиттере с Phase Zero У руля — Брэндон Дэвис.

«Я очень рад запустить Phase Zero после того, как провел последние несколько лет в общении с таким большим количеством замечательных поклонников Marvel», — сказал Дэвис. «Я отлично устроил и продюсировал серию After the Dead, , общение с фанатами The Walking Dead, и таким количеством замечательных актеров, сценаристов и режиссеров через это шоу, что я не вижу предела тому, как много мы можем повеселиться. на Phase Zero, собирает поклонников Marvel с актерами, режиссерами, продюсерами и создателями комиксов.Я надеюсь, что это шоу даст нам возможность объединить слушателей и фанатов и, в конечном итоге, вместе сделать еще больше. Конечно, мы также собираемся добавить немного веселья в игру Star Wars , DC и другие вещи, так что Phase Zero — это место, где приветствуются все фанаты, и я хочу создать позитивное, веселое сообщество. «

Новые эпизоды подкаста Phase Zero записываются в пятницу в 12:00 по восточному времени / в 9:00 по тихоокеанскому времени на twitch.tv/comicbook до того, как они будут доступны на всех основных платформах подкастов.

Эффективный импеданс, близкий к нулю, с конечной фазовой скоростью для увеличения чувствительности и срабатывания за счет спаривания резонаторов

Эффекты импеданса, близкого к нулю

Чтобы начать с мотивации исследовать эффективный импеданс, близкий к нулю, и продемонстрировать его влияние на движение волн, мы рассмотрим проблему волнового излучения, изображенную на рис. 1. На рис. 1а показаны две тонкие пластины, функционирующие как волноводы, несущие плоские продольные волны, распространяющиеся в направлении x мм.Поле излучаемой волны за пределами точки P показано на рис. 1b, когда пластины возбуждаются пьезокерамическими накладными преобразователями. Здесь в качестве частоты возбуждения выбрана резонансная частота Фабри – Перо частично утоненной пластины. Рисунок 1b показывает, что поле излучаемой волны может быть увеличено при уменьшении \ (\ hat t / t_0 \), где t 0 и \ (\ hat t \), соответственно, представляют толщину номинальной и обработанной части плиты. Если ρ понимать как линейную плотность, уменьшенная толщина пластины соответствует пониженному механическому сопротивлению.{\ mathrm {2}} / 2 \ hat z} \ right) \) может увеличиваться, если \ (\ hat z \) уменьшается, потому что датчик можно рассматривать как обеспечивающий силу постоянной величины F inp . Однако снизить его импеданс путем механической обработки какой-либо части образца волновода нереально и непрактично. Следовательно, должен существовать неразрушающий метод, позволяющий снизить импеданс или даже приблизить его к нулю.

Рис. 1

Понятие пониженного импеданса для усиления волнового излучения. a Тонкие пластины однородной и неоднородной толщины, несущие плоские продольные волны. Пьезокерамические патч-преобразователи (PZT) установлены для возбуждения S 0 волн Лэмба в пластинах, имитирующих продольные волны в стержне. b Эффекты усиления неоднородности (выраженные через \ (\ hat t / t_0 \), где \ (\ hat t \) — уменьшенная толщина зоны установки датчика и t 0 номинальная толщина) от величины генерируемого поля смещения

В этой работе мы показываем, что если область волновода окружена парой резонаторов, его эффективный импеданс может быть снижен почти до нуля.Хорошо известно, что одиночный резонатор может устранить колебания гармонически возбужденной системы в качестве динамического поглотителя 25 , и что набор периодически расположенных резонаторов, часто используемых для изготовления метаматериалов, может давать экстремальные значения плотности или жесткости 26,27, 28,29 . В последующем анализе мы покажем, что пара резонаторов может влиять на эффективное сопротивление области, окружающей их. В ходе этого исследования показано, что при использовании пары резонаторов эффективная плотность и жесткость области, которую они окружают, одинаково изменяются в зависимости от частоты.Таким образом, только эффективное сопротивление может достигать чрезвычайно низкого значения, в то время как эффективная фазовая скорость остается неизменной. Частота почти нулевого эффективного импеданса с конечной фазовой скоростью должна быть дополнительно настроена на резонансную частоту Фабри – Перо; в противном случае большое рассогласование импеданса между областью среды с эффективным импедансом, близкой к нулю, и окружающей средой происхождения запрещает излучение волн в окружающую среду. Подробный анализ будет дан ниже.

Анализ системы с парным резонатором

На рис. 2а показана тонкая пластина с установленными С-образными коробчатыми балками.Лучи действуют как резонаторы. В каждом из мест установки x = ± W , две балки, одна на верхней поверхности, а другая на нижней поверхности, расположены симметрично для взаимодействия с чистыми продольными волнами. Предполагается, что волновод приводится в действие тонким пьезокерамическим патч-преобразователем размером 2 L T ( L T < W ). Фактическая волна, распространяющаяся в пластине, является самой низкой симметричной волной Лэмба ( S 0 ) на интересующей частоте.Как показано в более ранних работах 6,16,30 , одномерная продольная волна хорошо соответствует волне S 0 . Следовательно, волновое движение в пластине будет моделироваться с помощью одномерных продольных волн в стержне, как показано на рис. 2b. Чтобы облегчить теоретический волновой анализ, исполнительный механизм описывается моделью силы штифта 31,32 с использованием двух сосредоточенных сил (- F inp , F inp ), как на рис.2b. Эта модель штифтовой силы точна, когда механический импеданс пьезокерамического преобразователя (PZT) незначителен по сравнению с импедансом пластины. Чтобы точно охарактеризовать фактический исполнительный механизм с помощью модели силы штифта, положения штифтовых сил корректируются до (- L , L ) путем согласования частотной характеристики системы пластин PZT, полученной с помощью аналитической силы штифта. модель и модель полной конечно-элементной модели. Соответственно, мы использовали 2 L = 36.6 мм, а 2 L T = 30 мм.

Рис. 2

Эскиз предлагаемой парной резонаторной системы. a Эскиз тонкой пластины с двумя резонаторами, установленными на x = ± Вт . Каждый резонатор на x = W или x = — W состоит из двух симметрично сконфигурированных C-образных лучей для обеспечения генерации чистых симметричных по толщине продольных волн без создания антисимметричных по толщине изгибных волн.(Размеры алюминиевых резонаторов коробчатого сечения с C-каналом: t R = 3 мм, w R = 6 мм, h R = 4,5 мм, b R = 1,5 мм, а толщина испытательной пластины t 0 = 2 мм.) b Одномерные модели стержней, описывающие продольное движение в пластине, показанные в a . Модель на верхнем рисунке изображает стержень, оборудованный двумя точечными резонаторами, в то время как модель на нижнем рисунке представляет собой эквивалентную модель стержня с измененным эффективным импедансом для учета влияния резонаторов на волновое движение.Приведение в действие патчем PZT моделируется двумя сосредоточенными силами на штырях. c Анализ модели стержня, в которой заданы смещения в различных местах

В этом анализе каждый резонатор можно рассматривать как дискретную систему масс-пружина, соединенную в одной точке со стержнем, имеющим номинальный механический импеданс z 0 . Мы покажем, что из-за установки парных резонаторов эффективное сопротивление z области, которую они окружают, может стать близким к нулю.Для оценки эффективного импеданса окруженной области мы рассматриваем эквивалентную модель стержня, состоящую из исходной среды с импедансом z 0 и другой однородной среды с пониженным импедансом z ; эта модель проиллюстрирована внизу рис. 2b. Для построения эквивалентной модели также должна быть определена эффективная длина 2 W ′, определяющая зону пониженного импеданса.

Как показано на рис. 2b, две сосредоточенные гармонические силы на штырях, действующие в противоположных направлениях, прикладываются под углом x = ± L 31,32 .Они обозначены F inp и \ (\ tilde F _ {{\ mathrm {inp}}} \) в двух моделях на рис. 2b. В ходе анализа гармоническая зависимость e i ωt ( ω : угловая частота, t : время, \ ({\ mathrm {i}} = \ sqrt {- 1} \)) будет опускаться. . Обратите внимание, что \ (\ tilde F _ {{\ mathrm {inp}}} \ ne F _ {{\ mathrm {inp}}} \), где \ (\ tilde F _ {{\ mathrm {inp}}} \) — это контактная сила в эквивалентной системе, в которой эффекты двух резонаторов размыты.

Для анализа волнового движения в исходной одномерной модели с двумя резонаторами мы рассматриваем только продольное движение и, таким образом, используем переменные поля, показанные на рис. 2c. Резонатор состоит из массы м и жесткости s , и он прикреплен к стержню в точке Q Q ′). Продольное смещение массой м определяется как u R . Поле смещения в полосе будет обозначено u , а его значение в точке Q обозначено u Q .В зависимости от значений x ≥ 0, u выражается с использованием различных формул, таких как u = u 1 e −i kx u 1 e i kx (0 ≤ x L ), u = u 2 e −i kx + u 3 e i

kx 90 ( L + x W ) и U e −i kx ( W + x ).{{\ mathrm {i}} kL}} \ right) $$

(3)

Обратите внимание, что внутренняя сила, рассматриваемая в силовом равновесии в уравнении. (3) рассчитывается как EA 0 u / ∂ x , где жесткость E обозначает модуль упругости Юнга, а A 0 = b 0 t 0 ( b 0 : ширина), которая представляет собой площадь поперечного сечения стержня. {- 2 {\ mathrm {i}} кВт}) — 2 {\ mathrm {i}}}}, $$

(9b)

и

$$ S_0 = — {\ mathrm {i}} \ frac {{kF _ {{\ mathrm {inp}}}}} {{z_0 {{\ omega}}}}} {\ mathrm {sin} } \, kL = — {\ mathrm {i}} \ frac {{F _ {{\ mathrm {inp}}}}} {{EA_0}} \ sin kL.{f _ {\ mathrm {T}}}} \ right | = \ left | {F _ {\ mathrm {inp}}} \ right | / EA_0 \) на частоте f T = c /4 L , что соответствует kL = π / 2. Здесь | F inp | предполагается, что он не зависит от частоты.

Анализ эквивалентной системы с использованием эффективного импеданса

Волновое поведение, наблюдаемое в исходной модели, показанной в верхней части рис. 2b, также может быть проанализировано с использованием эквивалентной модели, показанной в нижней части рис.{- {\ mathrm {i}} кВт \ prime} $$

(14)

Поскольку размер L пластыря PZT должен оставаться неизменным в эквивалентной и исходной системах, волновое число k для области — L z L также должно быть таким же. как в эквивалентной, так и в исходной системах. Поскольку эквивалентная система рассматривается как однородная эффективная среда, то же самое k следует использовать для всей эквивалентной системы, как в уравнениях.(10) — (14).

Наш подход к оценке z и W ‘ состоит в том, чтобы приравнять волновое поле в эквивалентной системе к исходной системе с двумя точечными резонаторами. Соответственно, мы требуем, чтобы выполнялись следующие условия:

$$ \ tilde U = U, ({\ mathrm {for}} \, x \ ge W \ prime), $$

(15)

$$ \ frac {{\ tilde u_1}} {{u_1}} = \ frac {{\ tilde u_2}} {{u_2}} = \ frac {{\ tilde u_3}} {{u_3}} = g ({{\ omega}}), $$

(16)

$$ \ frac {{\ tilde F _ {{\ mathrm {inp}}}}} {{F _ {{\ mathrm {inp}}}}} = h ({{\ omega}}), $$

(17)

, где g ( ω ) и h ( ω ) — неизвестные функции ω , которые необходимо определить для точной эквивалентности. 2) — {{\ omega}} s}}, $$

(21а)

$$ \ beta = \ arg (r).$

(21b)

Уравнения (18) — (19) показывают, что z и W ′ изменяются в зависимости от ω , m и s , в то время как уравнение. (18a) дает эффективный импеданс z , который меньше, чем z 0 , уравнение. (19a) дает значение z , которое больше z 0 . Поскольку нас интересует случай, когда z < z 0 , указанный в уравнении.(18a) эффективная длина W ‘ должна быть оценена по формуле. (18б). Уравнение (18) показывает, что решение для W ‘не является уникальным, но для удобства можно выбрать значение, близкое к W . Следует отметить, что если W ‘ = W , величина и фаза \ (\ tilde U \) не могут быть такими же, как у U . (Более того, можно также показать, что решение в уравнении (19) также увеличивает излучаемое поле U , но мы используем уравнение. {f _ {\ mathrm {T}}}} \ right | \) всегда можно усилить на некоторых частотах.{f _ {\ mathrm {T}}}} \ right | \) при f = f T , что дает максимально усиленное излучаемое волновое поле. Максимально усиленное поле излучаемой волны возможно, потому что z становится меньше z 0 .

Здесь стоит объяснить, как эффективное сопротивление в области, ограниченной парой резонаторов вблизи их резонансной частоты, приближается к нулю. С этой целью будет проведена аналогия между отражением волны внутри исходной области, ограниченной парой резонаторов, и отражением волны внутри области пониженной эффективной среды в эквивалентной системе.Прежде всего отметим, что резонаторы вблизи своей резонансной частоты работают как динамические поглотители, делая смещение пластины почти нулевым в точке установки резонатора. Следовательно, волна u 2 , распространяющаяся к резонатору, в основном отражается в точке, в результате чего u 3 e i кВт ≈ — u 2 e −i кВт . Волна отражается в противофазе, как если бы область, ограниченная резонаторами, была окружена средой с гораздо более высоким импедансом по сравнению с импедансом ограниченной области.{- {\ mathrm {i}} кВт \ prime} \) удовлетворяется на границе твердой стены, импеданс z можно считать близким к нулю, поскольку значение импеданса z 0 является конечный.

Влияние конечной фазовой скорости на выходную мощность

Здесь мы объясним, почему условие конечной фазовой скорости является критическим для повышенной выходной мощности преобразователя в среде с почти нулевым эффективным импедансом. Используя выражение в формуле. (9a) для выходного смещения U 0 преобразователем в среде с полным сопротивлением z 0 без установленного резонатора, можно записать выходное смещение U в среде с полным сопротивлением z как :

$$ \ осталось | U \ право | = \ left | {\ frac {{F _ {{\ mathrm {inp}}}}} {{z {{\ omega}}}} \ sin kL} \ right | = \ frac {{F _ {{\ mathrm {inp}}}}} {{z {{\ omega}}}} \ left | {\ sin \ frac {{\ omega L}} {c}} \ right |.$

(25)

Теперь будут рассмотрены следующие два случая:

Корпус 1:

нулевое сопротивление \ (\ left ({z = \ sqrt {\ rho E} A_0 \ to 0} \ right) \) и бесконечная фазовая скорость \ (\ left ({c = \ sqrt {E / \ rho} \ to \ infty} \ right) \).

Корпус 2

(предлагаемый случай): нулевое сопротивление \ (\ left ({z = \ sqrt {\ rho E} A_0 \ to 0} \ right) \) и конечная фазовая скорость \ (\ left ({c = \ sqrt {E / \ rho} = {\ mathrm {Finin}}} \ right) \).

С точки зрения ρ (плотность) и E (жесткость), случаи 1 и 2 соответствуют конечному E и нулю E , соответственно, в то время как ноль ρ применяется в обоих случаях. Обратите внимание, что для последующего анализа предполагается, что F inp является фиксированным конечным значением.

Сначала исследуем выходное смещение | U | и мощность P как ρ → 0 с конечным E .Из уравнения. (25),

$$ \ begin {array} {* {20} {c}} {} \\ {\ lim} \\ {\ rho \ to 0} \\ {E = {\ mathrm {конечный} }} \ end {array} \ left | U \ право | = \ begin {array} {* {20} {c}} {} \\ {\ lim} \\ {\ rho \ to 0} \\ {E = {\ mathrm {конечный}}} \ end {array} \ frac {{F _ {\ mathrm {inp}}}} {{z {{\ omega}}}} \ left | {\ sin \ frac {{\ omega L}} {c}} \ right | \ приблизительно \ begin {array} {* {20} {c}} {} \\ {\ lim} \\ {\ rho \ to 0} \\ {E = {\ mathrm {конечный}}} \ end {массив } \ frac {{F _ {\ mathrm {inp}} L}} {{zc}}, $$

(26)

, где \ (\ sin \ omega L / c \ приблизительно \ omega L / c \) используется, потому что c → ∞ как ρ → 0 с конечным E .Уравнение (26) можно еще больше упростить, используя \ (z = \ sqrt {\ rho E} A_0 \) и \ (c = \ sqrt {E / \ rho} \):

$$ \ begin {array} {* {20} {c}} {} \\ {\ lim} \\ {\ rho \ to 0} \\ {E = {\ mathrm {конечный}}} \ end {array} \ left | U \ право | \ приблизительно \ begin {array} {* {20} {c}} {} \\ {\ lim} \\ {\ rho \ to 0} \\ {E = {\ mathrm {конечный}}} \ end {массив } \ frac {{F _ {\ mathrm {inp}} L}} {{zc}} \\ = \ begin {array} {* {20} {c}} {} \\ {\ lim} \\ {\ rho \ to 0} \\ {E = {\ mathrm {конечный}}} \ end {массив} \ frac {{F _ {\ mathrm {inp}} L}} {{\ sqrt {\ rho E} A_0 \ sqrt {E / \ rho}}} = \ frac {{F _ {\ mathrm {inp}} L}} {{EA_0}}. 2 \ до 0.$

(28)

Результат в уравнении. (28) указывает на то, что выходная мощность исчезает в пределе нулевого импеданса и бесконечной фазовой скорости.

Во-вторых, расследуем | U | и P для случая 2 (нулевой импеданс и конечная фазовая скорость). Используя уравнение. (26) и предполагая, что ω и L правильно выбраны так, чтобы \ (\ left | {\ sin \ omega L / c} \ right | = 1 \),

$$ \ begin {array} { * {20} {c}} {} \\ {\ lim} \\ {z \ to 0} \\ {c = {\ mathrm {Finin}}} \ end {array} \ left | U \ право | = \ begin {array} {* {20} {c}} {} \\ {\ lim} \\ {z \ to 0} \\ {c = {\ mathrm {конечный}}} \ end {array} \ гидроразрыв {{F _ {\ mathrm {inp}}}} {{z {{\ omega}}}} \ left | {\ sin \ frac {{\ omega L}} {c}} \ right | = \ begin {array} {* {20} {c}} {} \\ {\ lim} \\ {z \ to 0} \\ {c = {\ mathrm {конечный}}} \ end {array} \ гидроразрыв {{F _ {\ mathrm {inp}}}} {{z {{\ omega}}}} \ to \ infty $$

(29)

$$ \ begin {array} {* {20} {c}} {} \\ {\ lim} \\ {z \ to 0} \\ {c = {\ mathrm {конечный}}} \ end { массив} P = \ begin {array} {* {20} {c}} {} \\ {\ lim} \\ {z \ to 0} \\ {c = {\ mathrm {конечный}}} \ end { массив} \ frac {1} {2} z \ left | {{\ mathrm {i}} \ omega U} \ right | ^ 2 = \ begin {array} {* {20} {c}} {} \\ {\ lim} \\ {z \ to 0} \\ {c = {\ mathrm {Finin}}} \ end {array} \ frac {1} {2} z \ left | {\ frac {{F _ {\ mathrm {inp}}}} {z}} \ right | ^ 2 \ to \ infty $$

(30)

Сравнение выражений в уравнениях.{f _ {\ mathrm {T}}}} \ right | \) мы использовали две коробчатые балки С-образного профиля из алюминия, где t R = 3 мм, w R = 6 мм, b R = 1,5 мм и h R = 4,5 мм, как показано на рис. 2а (модуль Юнга E = 69 ГПа, коэффициент Пуассона ν = 0,3, а плотность ρ = 2700 кг · м −3 ). Они находились на расстоянии 2 Вт = 78,8 мм друг от друга и устанавливались на алюминиевой пластине толщиной 2 мм.При анализе методом конечных элементов (более подробную информацию см. В разделе «Методы») масса и жесткость резонатора были оценены как м = 103,0 г и с = 35,3 GN м −1 , что дает f R = 93,1 кГц. Номинальный импеданс и фазовая скорость в алюминиевой пластине для движения плоской продольной волны составляли z 0 = 28350 кг с -1 и c = 5250 м с -1 соответственно. Нашивка PZT размером L = 18.{f _ {\ mathrm {T}}}} \ right | \) и z / z 0 в зависимости от частоты возбуждения f . Обратите внимание, что, поскольку ρ и E ведут себя одинаково в зависимости от частоты, фазовая скорость остается неизменной. На рис. 3b показано, что z / z 0 приближается к нулю, когда частота f приближается к f R .

Рис. 3

Изменение основных полей деформации и эффективных свойств в зависимости от частоты. a Поле излучаемой деформации | S |, b эффективный импеданс z (плотность ρ и жесткость E ), c Коэффициент передачи в конфигурации стержня, показанной на вставке снизу, d влияние резонансной частоты f R на | S | и e влияние расстояния W между двумя резонаторами на | S |

На рисунке 3a также показано, что при f = f T , где номинальная выходная деформация | S 0 | максимизируется, | S | увеличивается в 4 раза.{f _ {\ mathrm {T}}}} \ right | \). Это усиление при f = f T связано с двумя фактами: z < z 0 при f = f T и f T настроен быть одним из резонансов Фабри – Перо эффективной среды, ограниченной шириной 2 W ‘. Фактически, существует набор резонансов Фабри – Перо, удовлетворяющих \ (\ sin kW \ prime = 0 \). Эти резонансные частоты Фабри – Перо легче идентифицировать, исследуя коэффициент передачи | T | = | C / A | изображенный на рис.3c. Здесь A , B и C , соответственно, обозначают величины падающей, отраженной и прошедшей волн через пластину шириной 2 W ′ и импеданс z , который вставлен в однородную среду. импеданса z 0 . Уравнение (24) также указывает, что \ (\ left | {S / S_0} \ right | = \ sqrt {z_0 / z}> 1 \) для \ ({\ mathrm {sin}} kW \ prime = 0 \) и \ (\ left | {S / S_0} \ right | = \ sqrt {z / z_0} <1 \) для \ ({\ mathrm {cos}} kW \ prime = 0 \). {f _ {\ mathrm { T}}}} \ right | \) на целевой частоте f T .Влияние расстояния (2 Вт ) между двумя резонаторами на | S | показан на рис. 3e, где f R предполагается фиксированным. Поскольку изменяется только Вт , эффективное сопротивление z не изменяется. Однако резонансные частоты Фабри-Перо в среде с импедансом z в области, ограниченной 2 W ‘, изменяются, потому что W’ изменяется с W , как показано в уравнении. (18). Следовательно, пиковая частота локально максимизированного | S | значительно влияет W .Мы утверждаем, что явление на рис. 3e не может наблюдаться, если установлен только один резонатор, потому что он функционирует только как динамический поглотитель 25 . Интерференция волн, возникающая между спаренными резонаторами, уникальна тем, что она может снизить эффективный импеданс z области, окруженной резонаторами, даже почти до нуля.

Экспериментальные результаты

Наконец, мы представляем результаты эксперимента, проведенного для проверки почти нулевого импеданса или, что более реалистично, пониженного импеданса.{f _ {\ mathrm {T}}}} \ right | \) нанесены красной пунктирной линией с кружками на рис. 4b. Показано, что | S | при f = f T = 71,7 кГц увеличивается на 307%. На графике также показан результат моделирования методом конечных элементов, полученный с использованием подробной двухмерной модели континуума, которая включает в себя С-образные спаренные резонаторы (с f R = 93,1 кГц). Для моделирования использовался COMSOL Multiphysics. Результат конечных элементов, полученный без учета какого-либо эффекта демпфирования, обозначен «FEM» на рис.4b и находится в довольно хорошем соответствии с теоретическим результатом, рассчитанным по формуле. (9). Для учета демпфирующего эффекта, возникающего в эксперименте, коэффициент потерь 0,065 был оценен на основе экспериментального результата и учтен для резонаторов при моделировании методом конечных элементов. Соответствующий результат, обозначенный «МКЭ + затухание», довольно хорошо согласуется с экспериментальным результатом.

Рис. 4

Экспериментальная демонстрация в тонкой пластине. a Установка для экспериментов с продольными волнами в тонкой пластине.{f _ {\ mathrm {T}}}} \ right | \) на рис. 4b подставляется в формулу. (31) можно оценить \ (\ left. {Z / z_0} \ right | _ {\ exp} \) = 0,053. Для оценки учитывается эффект демпфирования. Это значение довольно хорошо согласуется с теоретическим значением z / z 0 | Теория = 0,056 при f = f T .

НУЛЕВАЯ ФИЛЬТРАЦИЯ | Глава тринадцатая. Уловки цифровой обработки сигналов

Вы можете отменить нелинейные фазовые эффекты БИХ-фильтра, следуя процессу, показанному на Рисунке 13-31 (a).Выход y (n) будет отфильтрованной версией x (n) без искажения фазы, вызванного фильтром. Один и тот же БИХ-фильтр используется дважды в этой схеме, а этап обращения времени представляет собой прямое переключение влево-вправо последовательности во временной области. Обратите внимание на следующее. Если некоторая спектральная составляющая в x (n) имеет произвольную фазу a градусов, а первый фильтр вызывает фазовый сдвиг на –b градусов, фаза этого спектрального компонента в узле A будет составлять a – b градусов. Первый шаг реверсирования времени будет сопрягать эту фазу и вызывать дополнительный фазовый сдвиг на –q градусов.(Приложение C объясняет этот эффект.) Следовательно, фаза компонента в узле B будет –a + b – q градусов. Фазовый сдвиг второго фильтра на –b градусов дает фазу –a – q градусов в узле C. Последний этап обращения времени (часто опускаемый в литературных описаниях этого процесса нулевой фазы фильтрации) будет сопрягать эту фазу и снова вызывать дополнительную фазовый сдвиг –q градусов. К счастью, фаза спектрального компонента в y (n) будет a + q – q = a градусов, такая же фаза, как и в x (n). Это свойство дает общий фильтр, фазовая характеристика которого равна нулю градусов во всем частотном диапазоне.

Рисунок 13-31. Два эквивалентных метода фильтрации с нулевой фазой.

Эквивалентный фильтр нулевой фазы представлен на Рисунке 13-31 (b). Конечно, эти методы фильтрации с нулевой фазой не могут выполняться в реальном времени, потому что мы не можем повернуть время вспять (по крайней мере, в нашей Вселенной). Эта фильтрация представляет собой блочную обработку или автономный процесс, такой как фильтрация звукового файла на компьютере. Прежде чем мы начнем обработку, у нас должны быть все образцы времени.Начальное изменение направления времени на рис. 13-31 (b) иллюстрирует это ограничение.

В начале и в конце отфильтрованных последовательностей будут присутствовать переходные эффекты фильтра. Если переходные эффекты мешают в данном приложении, рассмотрите возможность отбрасывания L отсчетов с начала и конца конечной временной последовательности y (n), где L в 4 (или 5) раз больше порядка БИХ-фильтра.

Между прочим, окончательная амплитуда колебаний полосы пропускания (в дБ) этого процесса фильтрации с нулевой фазой будет вдвое больше, чем пульсации полосы пропускания одиночного БИХ-фильтра.Окончательное затухание в полосе задерживания также будет вдвое больше, чем у одиночного фильтра.

Amazon
Назад Не бойтесь покупать книги Вперед

Глава первая.Дискретные последовательности и системы

Глава вторая. Периодическая выборка

Глава третья. Дискретное преобразование Фурье

Глава четвертая. Быстрое преобразование Фурье

Глава пятая. Фильтры с конечной импульсной характеристикой

Глава шестая. Фильтры с бесконечной импульсной характеристикой

Глава седьмая. Специализированные КИХ-фильтры нижних частот

Глава восьмая. Квадратурные сигналы

Глава девятая. Дискретное преобразование Гильберта

Глава десятая.Преобразование частоты дискретизации

Глава одиннадцатая. Усреднение сигнала

Глава двенадцатая. Форматы цифровых данных и их влияние

Глава тринадцатая. Уловки цифровой обработки сигналов

Приложение A. Арифметика комплексных чисел

Приложение B. Замкнутая форма геометрического ряда

Приложение C. Обращение времени и DFT

Приложение D. Среднее значение, дисперсия и стандартное отклонение

Приложение E. Децибелы (дБ и дБм)

Приложение F.Терминология цифрового фильтра

Приложение G. Расчеты фильтра частотной выборки

Приложение H. Таблицы проектирования частотных фильтров

Показать все меню


Понимание цифровой обработки сигналов (2-е издание)

ISBN: 0131089897
EAN: 2147483647

Год: 2004
Страниц: 183


Похожая книга на Amazon


Флайлиб.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *