• 10.01.2021

Подключение светодиода на 220 вольт: Как подключить светодиод к 220в: схемы, ошибки, нюансы, видео

Содержание

Как подключить светодиод к 220в: схемы, ошибки, нюансы, видео

Обычно светодиоды подключаются к 220В при помощи драйвера, рассчитанного под их характеристики. Но если требуется подключить только один маломощный светодиод, например, в качестве индикатора, то применение драйвера становится нецелесообразным. В таких случаях возникает вопрос — как подключить светодиод к 220 В без дополнительного блока питания.

Основы подключения к 220 В

В отличие от драйвера, который питает светодиод постоянным током и сравнительно небольшим напряжением (единицы-десятки вольт), сеть выдает переменное синусоподобное напряжение с частотой 50 Гц и средним значением 220 В. Поскольку светодиод пропускает ток только в одну сторону, то светиться он будет только на определенных полуволнах:

То есть led при таком питании светится не постоянно, а мигает с частотой 50 Гц. Но из-за инерционности человеческого зрения это не так заметно.

В то же время напряжение обратной полярности, хотя и не заставляет led светиться, все же прикладывается к нему и может вывести из строя, если не предпринять никаких защитных мер.

Способы подключения светодиода к сети 220 В

Самый простой способ (читайте про все возможные способы подключения led) – подключение при помощи гасящего резистора, включенного последовательно со светодиодом. При этом нужно учесть, что 220 В – это среднеквадратичное значение U в сети. Амплитудное значение составляет 310 В, и его нужно учитывать при расчете сопротивления резистора.

Кроме того, необходимо обеспечить защиту светоизлучающего диода от обратного напряжения той же величины. Это можно сделать несколькими способами.

Последовательное подключение диода с высоким напряжением обратного пробоя (400 В и более).

Рассмотрим схему подключения более подробно.

 

В схеме используется выпрямительный диод 1N4007 с обратным напряжением 1000 В. При изменении полярности все напряжение будет приложено именно к нему, и led оказывается защищенным от пробоя.

Такой вариант подключения наглядно показан в этом ролике:

Также здесь описывается, как определить расположение анода и катода у стандартного маломощного светодиода и рассчитать сопротивление гасящего резистора.

Шунтирование светодиода обычным диодом.

Здесь подойдет любой маломощный диод, включенный встречно-параллельно с led. Обратное напряжение при этом будет приложено к гасящему резистору, т.к. диод оказывается включенным в прямом направлении.

Встречно-параллельное подключение двух светодиодов:

Схема подключения выглядит следующим образом:

Принцип аналогичен предыдущему, только здесь светоизлучающие диоды горят каждый на своем участке синусоиды, защищая друг друга от пробоя.

Обратите внимание, что подключение светодиода к питанию 220В без защиты ведет к быстрому выходу его из строя.

Схемы подключения к 220В при помощи гасящего резистора обладают одним серьезным недостатком: на резисторе выделяется большая мощность.

Например, в рассмотренных случаях используется резистор сопротивлением 24 Ком, что при напряжении 220 В обеспечивает ток около 9 мА. Таким образом, мощность, рассеиваемая на резисторе, составляет:

9 * 9 * 24 = 1944 мВт, приблизительно 2 Вт.

То есть для оптимального режима работы потребуется резистор мощностью не менее 3 Вт.

Если же светодиодов будет несколько, и они будут потреблять больший ток, то мощность будет расти пропорционально квадрату тока, что сделает применение резистора нецелесообразным.

Применение резистора недостаточной мощности ведет к его быстрому перегреву и выходу из строя, что может вызвать короткое замыкание в сети.

В таких случаях в качестве токоограничивающего элемента можно использовать конденсатор. Преимущество этого способа в том, что на конденсаторе не рассеивается мощность, поскольку его сопротивление носит реактивный характер.

Здесь показана типовая схема подключения светоизлучающего диода в сеть 220В при помощи конденсатора. Поскольку конденсатор после отключения питания может хранить в себе остаточный заряд, представляющий опасность для человека, его необходимо разряжать при помощи резистора R1. R2 защищает всю схему от бросков тока через конденсатор при включении питания. VD1 защищает светодиод от напряжения обратной полярности.

Конденсатор должен быть неполярным, рассчитанным на напряжение не менее 400 В.

Применение полярных конденсаторов (электролит, тантал) в сети переменного тока недопустимо, т.к. ток, проходящий через них в обратном направлении, разрушает их конструкцию.

Емкость конденсатора рассчитывается по эмпирической формуле:

 

где U – амплитудное напряжение сети (310 В),

I – ток, проходящий через светодиод (в миллиамперах),

Uд – падение напряжения на led в прямом направлении.

Допустим, нужно подключить светодиод с падением напряжения 2 В при токе 9 мА. Исходя из этого, рассчитаем емкость конденсатора при подключении одного такого led к сети:

Данная формула действительна только для частоты колебаний напряжения в сети 50 Гц. На других частотах потребуется пересчет коэффициента 4,45.

Нюансы подключения к сети 220 В

При подключении led к сети 220В существуют некоторые особенности, связанные с величиной проходящего тока. Например, в распространенных выключателях освещения с подсветкой, светодиод включается по схеме, изображенной ниже:

Как видно, здесь отсутствуют защитные диоды, а сопротивление резистора выбрано таким образом, чтобы ограничить прямой ток led на уровне около 1 мА. Нагрузка в виде лампы также служит ограничителем тока. При такой схеме подключения светодиод будет светиться тускло, но достаточно для того, чтобы разглядеть выключатель в комнате в ночное время. Кроме того, обратное напряжение будет приложено в основном к резистору при разомкнутом ключе, и светоизлучающий диод оказывается защищенным от пробоя.

Если требуется подключить к 220В несколько светодиодов, можно включить их последовательно на основе схемы с гасящим конденсатором:

При этом все led должны быть рассчитаны на одинаковый ток для равномерного свечения.

Можно заменить шунтирующий диод встречно-параллельным подключением светодиодов:

В обоих случаях нужно будет пересчитать величину емкости конденсатора, т.к. возрастет напряжение на светодиодах.

Параллельное (не встречно-параллельное) подключение led в сеть недопустимо, поскольку при выходе одной цепи из строя через другую потечет удвоенный ток, что вызовет перегорание светодиодов и последующее короткое замыкание.

Еще несколько вариантов недопустимого подключения светоизлучающих диодов в сеть 220В описаны в этом видео:

Здесь показано, почему нельзя:

  • включать светодиод напрямую;
  • последовательно соединять светодиоды, рассчитанные на разный ток;
  • включать led без защиты от обратного напряжения.

Безопасность при подключении

При подключении к 220В следует учитывать, что выключатель освещения обычно размыкает фазный провод. Ноль при этом проводится общим по всему помещению. Кроме того, электросеть зачастую не имеет защитного заземления, поэтому даже на нулевом проводе присутствует некоторое напряжение относительно земли. Также следует иметь в виду, что в некоторых случаях провод заземления подключается к батареям отопления или водопроводным трубам. Поэтому при одновременном контакте человека с фазой и батареей, особенно при монтажных работах в ванной комнате, есть риск попасть под напряжение между фазой и землей.

В связи с этим, при подключении в сеть лучше отключать и ноль, и фазу при помощи пакетного автомата во избежание поражения током при прикосновении к токоведущим проводам сети.

Заключение

Описанные здесь способы подключения светодиодов в сеть 220В целесообразно применять только при использовании маломощных светоизлучающих диодов в целях подсветки или индикации. Мощные led так подключать нельзя, поскольку нестабильность сетевого напряжения приводит к их быстрой деградации и выходу из строя. В таких случаях нужно применять специализированные блоки питания светодиодов – драйверы.

Как подключить светодиоды к 220 В используя простые схемы

Достаточно часто нам приходится сталкиваться с таким вопросом — как подключить светодиоды к 220 В, или попросту к электрической сети переменного напряжения. Как таковое, прямое подключение диода напрямую к сети не несет никакой смысловой нагрузки. Даже при использовании определенных схем мы не получим необходимого эффекта.

Если нам необходимо подключить светодиод к сети постоянного напряжения, то такая задача решается очень просто — ставим ограничительный резистор и забываем. Светодиод как работал «в прямом направлении» так и будет работать. Резисторы любого номинала, а также наборами можно купить в этом магазине буквально за копейки и с бесплатной доставкой!

Если же нам необходимо использовать сеть 220 В для подключения LED, то на него будет уже воздействовать обратная полярность. Это хорошо видно, взглянув на график синусоиды, где каждый полупериод синусоида имеет свойство менять свой знак на противоположный.

В данном случае мы не получим свечение в этом полупериоде. В принципе, ничего страшного))), но светодиод выйдет из строя очень быстро.

Вообще гасящий резистор стоит выбирать из условия расчетного напряжения в 310 В. Объяснять почему так — муторное занятие, но стоит просто это запомнить, т.к. действующее значение напряжения составляет 220 В, а амплитудное уже увеличивается на корень из двух от действующего. Т.е. таким образом мы получаем приложенное прямое и обратное напряжение к светодиоду. Резистор подбирается на 310В обратной полярности, дабы защитить светодиод. Каким образом можно произвести защиту мы посмотрим ниже. На нашем сайте есть уже подготовленный калькулятор расчета резистора для светодиода.

к оглавлению ↑

Как подключить светодиоды к 220 В по простой схеме, используя резисторы и диод — вариант 1


Первая схема работает по принципу гашения обратного полупериода. Подавляющее большинство полупроводников отрицательно относятся к обратному напряжение. Для блокировки его нам нужен диод. Как правило, в большинстве случаев используют диоды типа IN4004, рассчитанный на напряжение больше 300 В.

к оглавлению ↑

Подключение LED по простой схеме с резистором и диодом — вариант 2


Другая простая схема показывает, как подключить светодиоды к 220 В переменного напряжения не намного сложнее и ее также можно отнести к простым схемам.

Рассмотрим принцип работы. При положительной полуволне ток идет сквозь резисторы 1 и 2, а также сам светодиод. В данном случае стоит помнить, что падение напряжения на светодиоде будет обратным для обычного диода — VD1. Как только в схему «попадает» отрицательная полуволна 220 В, ток пойдет через обычный диод и резисторы. В этом случае уже прямое падение напряжение на VD1 будет обратным по отношению к светодиоду. Все просто.

При положительной полуволне сетевого напряжения ток протекает через резисторы R1, R2 и светодиод LED1 (при этом прямое падение напряжения на светодиоде LED1 является обратным напряжением для диода VD1). При отрицательной полуволне сетевого напряжения ток протекает через диод VD1 и резисторы R1, R2 (при этом прямое падение напряжения на диоде VD1 является обратным напряжением для светодиода LED1).

к оглавлению ↑

Расчетная часть схемы


Номинальное напряжение сети:

UС.НОМ = 220 В

Принимается минимальное и максимальное напряжение сети (опытные данные):

UС.МИН = 170 В
UС.МАКС = 250 В

Принимается к установке светодиод LED1, имеющий максимально допустимый ток:

ILED1.ДОП = 20 мА

Максимальный расчетный амплитудный ток светодиода LED1:

ILED1. АМПЛ.МАКС = 0,7*ILED1.ДОП = 0,7*20 = 14 мА

Падение напряжения на светодиоде LED1(опытные данные):

ULED1 = 2 В

Минимальное и максимальное действующее напряжение на резисторах R1, R2:

UR.ДЕЙСТВ.МИН = UС.МИН = 170 В
UR.ДЕЙСТВ.МАКС = UС.МАКС = 250 В

Расчетное эквивалентное сопротивление резисторов R1, R2:

RЭКВ.РАСЧ = UR.АМПЛ.МАКС/ILED1.АМПЛ.МАКС = 350/14 = 25 кОм

Максимальная суммарная мощность резисторов R1, R2:

PR.МАКС = UR.ДЕЙСТВ.МАКС2/RЭКВ.РАСЧ = 2502/25 = 2500 мВт = 2,5 Вт

Расчетная суммарная мощность резисторов R1, R2:

PR.РАСЧ = PR.МАКС/0,7 = 2,5/0,7 = 3,6 Вт

Принимается параллельное соединение двух резисторов типа МЛТ-2, имеющих суммарную максимально допустимую мощность:

PR. ДОП = 2·2 = 4 Вт

Расчетное сопротивление каждого резистора:

RРАСЧ = 2*RЭКВ.РАСЧ = 2*25 = 50 кОм

Принимается ближайшее большее стандартное сопротивление каждого резистора:

R1 = R2 = 51 кОм

Эквивалентное сопротивление резисторов R1, R2:

RЭКВ = R1/2 = 51/2 = 26 кОм

Максимальная суммарная мощность резисторов R1, R2:

PR.МАКС = UR.ДЕЙСТВ.МАКС2/RЭКВ = 2502/26 = 2400 мВт = 2,4 Вт

Минимальный и максимальный амплитудный ток светодиода HL1 и диода VD1:

ILED1.АМПЛ.МИН = IVD1.АМПЛ.МИН = UR.АМПЛ.МИН/RЭКВ = 240/26 = 9,2 мА
ILED1.АМПЛ.МАКС = IVD1.АМПЛ.МАКС = UR.АМПЛ.МАКС/RЭКВ = 350/26 = 13 мА

Минимальный и максимальный средний ток светодиода HL1 и диода VD1:

ILED1.СР. МИН = IVD1.СР.МИН = ILED1.ДЕЙСТВ.МИНФ = 3,3/1,1 = 3,0 мА
ILED1.СР.МАКС = IVD1.СР.МАКС = ILED1.ДЕЙСТВ.МАКСФ = 4,8/1,1 = 4,4 мА

Обратное напряжение диода VD1:

UVD1.ОБР = ULED1.ПР = 2 В

Расчетные параметры диода VD1:

UVD1.РАСЧ = UVD1.ОБР/0,7 = 2/0,7 = 2,9 В
IVD1.РАСЧ = UVD1.АМПЛ.МАКС/0,7 = 13/0,7 = 19 мА

Принимается диод VD1 типа Д9В, имеющий следующие основные параметры:

UVD1.ДОП = 30 В
IVD1.ДОП = 20 мА
I0.МАКС = 250 мкА

к оглавлению ↑

Минусы использования схемы подключения светодиодов к 220 В по варианту 2


Главные недостатки подключения светодиодов по этой схеме — малая яркость светодиодов, за счет малого тока. ILED1.СР = (3,0-4,4) мА и большая мощность на резисторах: R1, R2: PR. МАКС = 2,4 Вт.

к оглавлению ↑

Вариант 3 подключения LEDs к электрической сети переменного напряжения 220 В


При положительном полупериоде ток протекает через резистор R1, диод и светодиод. При отрицательном ток не протекает, т.к. диод в этом случае включается в обратное направление.

Расчет параметров схемы аналогичен второму варианту. Кому надо — посчитает и сравнит. Разница небольшая.

к оглавлению ↑

Минусы подключения по 3 варианту


Если самые «пытливые умы» уже посчитали, то могут сравнить данные со вторым вариантом. Кому лень — придется поверить на слово. Минус такого подключения — также низкая яркость светодиода, т.к. ток протекающий через полупроводник составляет всего ILED1.СР = (2,8-4,2) мА.

Зато при такой схеме мы получаем заметное снижение мощности резистора: РR1.МАКС = 1,2 Вт вместо 2,4 Вт полученных ранее.

к оглавлению ↑

Подключение светодиода на 220 В с использованием диодного моста — 4 вариант


Как видно на графической картинке, в данном случае для подключения на 220 мы используем резисторы и диодный мост.

В данном случае ток через 2 резистора и светодиод ток будет протекать как при положительной, так и при отрицательной полуволне синусоиды за счет использования выпрямительного моста на диодах VD1-VD4.

UVD.РАСЧ = UVD.ОБР/0,7 = 2,6/0,7 = 3,7 В
IVD.РАСЧ = UVD.АМПЛ.МАКС/0,7 = 13/0,7 = 19 мА

Принимаются диоды VD1-VD4 типа Д9В, имеющие следующие основные параметры:

UVD.ДОП = 30 В
IVD.ДОП = 20 мА
I0.МАКС = 250 мкА

к оглавлению ↑

Недостатки схемы подключения по 4 варианту


Если все рассчитать по приведенным выше формулам, то можно провести аналогию со 2 вариантом подключения. Минусом будет большая мощность на резисторах: PR.МАКС = 2,4 Вт.

Однако при такой схеме мы получим заметное увеличение яркости светодиода: LED1: ILED1.СР = (5,9-8,7) мА вместо (2,8-4,2) мА

В принципе, это самые распространенные схемы, которые нам показывают как подключить светодиоды к 220 В с применением обычного диода и резисторов. Для простоты понимания были приведены расчеты. Не для всех, может быть понятные, но кому надо, тот найдет, прочитает и разберется. Ну а если нет, то достаточно будет простой графической части.

к оглавлению ↑

Как подключить светодиод к 220 В используя конденсатор


Выше мы посмотрели, как легко, используя только диоды и резисторы, подключить к сети 220 В любой светодиод. Это были простые схемы. Сейчас посмотрим на более сложные, но лучшие в плане реализации и долговечности. Для этого нам понадобится уже конденсатор.

Токоограничивающий элемент — конденсатор. На схеме — C1. Конденсатор должен быть рассчитан на работу с напряжением не менее 400 В. После зарядки последнего ток через него будет ограничивать резистор.

к оглавлению ↑

 Подключение светодиода к сети 220 В на примере выключателя с подсветкой


Сейчас уже никого не удивишь выключателем с интегрированной подсветкой в виде светодиода. Разобрав его и разобравшись мы получим еще один способ, благодаря которому можем подключить любой светодиод к сети 220 В.

Во всех выключателях с подсветкой используется резистор с номиналом не менее 20 кОм. Ток в этом случае ограничивается порядка 1А. При включении в сеть такой светодиод будет светиться. Ночью его легко можно различить на стене. Обратный же ток в этом случае будет очень маленьким и не сможет повредить полупроводник. В принципе, такая схема также имеет право на существование, но свет от такого диода будет все-таки ничтожно маленьким. И стоит ли овчинка выделки — не понятно.

к оглавлению ↑

Видео на тему подключения светодиода к сети 220 В


Ну и в конце всего длинного поста посмотрим видео на тему : «как подключить светодиоды к 220 В». Для тех, кому лень все читать было.

Простейшие схемы подключения светодиодов в 220 вольт без драйвера (самое простое питание светодиода от сети напряжением 220В)

Потому что нужно грамотно решить сразу две задачи:

  1. Ограничить прямой ток через светодиод, чтобы он не сгорел.
  2. Обеспечить защиту светодиода от пробоя обратным током.

Если проигнорировать любой из этих пунктов, светодиод моментально накроется медным тазом.

В самом простейшем случае ограничить ток через светодиод можно резистором и/или конденсатором. А предотвратить пробой от обратного напряжения можно с помощью обычного диода или еще одного светодиода.

Поэтому самая простая схема подключения светодиода к 220В состоит всего из нескольких элементов:

Защитный диод может быть практически любым, т.к. его обратное напряжение никогда не будет превышать прямого напряжения на светодиоде, а ток ограничен резистором.

Сопротивление и мощность ограничительного (балластного) резистора зависит от рабочего тока светодиода и рассчитывается по закону Ома:

R = (Uвх — ULED) / I

А мощность рассеивания резистора рассчитывается так:

P = (Uвх — ULED)2 / R

где Uвх = 220 В,
ULED — прямое (рабочее) напряжение светодиода. Обычно оно лежит в пределах 1.5-3.5 В. Для одного-двух светодиодов им можно пренебречь и, соответственно, упростить формулу до R=Uвх/I,
I — ток светодиода. Для обычных индикаторных светодиодов ток будет 5-20 мА.

Пример расчета балластного резистора

Допустим, нам нужно получить средний ток через светодиод = 20 мА, следовательно, резистор должен быть:

R = 220В/0.020А = 11000 Ом (берем два резистора: 10 + 1 кОм)

P = (220В)2/11000 = 4.4 Вт (берём с запасом: 5 Вт)

Необходимое сопротивление резистора можно взять из таблицы ниже.

Таблица 1. Зависимость тока светодиода от сопротивления балластного резистора.

Сопротивление резистора, кОмАмплитудное значение тока через светодиод, мАСредний ток светодиода, мАСредний ток резистора, мАМощность резистора, Вт
437. 22.551.1
24134.592
22145102.2
12269184
103111224.8
7.54115296.5
4.372255111.3
2.21415010022

Другие варианты подключения

В предыдущих схемах защитный диод был включен встречно-параллельно, однако его можно разместить и так:

Это вторая схема включения светодиодов на 220 вольт без драйвера. В этой схеме ток через резистор будет в 2 раза меньше, чем в первом варианте. А, следовательно, на нем будет выделяться в 4 раза меньше мощности. Это несомненный плюс.

Но есть и минус: к защитному диоду прикладывается полное (амплитудное) напряжение сети, поэтому любой диод здесь не прокатит. Придется подобрать что-нибудь с обратным напряжением 400 В и выше. Но в наши дни это вообще не проблема. Отлично подойдет, например, вездесущий диод на 1000 вольт — 1N4007 (КД258).

Не смотря на распространенное заблуждение, в отрицательные полупериоды сетевого напряжения, светодиод все-таки будет находиться в состоянии электрического пробоя. Но благодаря тому, что сопротивление обратносмещенного p-n-перехода защитного диода очень велико, ток пробоя будет недостаточен для вывода светодиода из строя.

Внимание! Все простейшие схемы подключения светодиодов в 220 вольт имеют непосредственную гальваническую связь с сетью, поэтому прикосновение к ЛЮБОЙ точке схемы — ЧРЕЗВЫЧАЙНО ОПАСНО!

Для уменьшения величины тока прикосновения нужно располовинить резистор на две части, чтобы получилось как показано на картинках:

Благодаря такому решению, даже поменяв местами фазу и ноль, ток через человека на «землю» (при случайном прикосновении) никак не сможет превысить 220/12000=0. 018А. А это уже не так опасно.

Как быть с пульсациями?

В обеих схемах светодиод будет светиться только в положительный полупериод сетевого напряжения. То есть он будет мерцать с частой 50 Гц или 50 раз в секунду, причём размах пульсаций будет равен 100% (10 мс горит, 10 мс не горит и так далее). Это будет заметно глазу.

К тому же, при подсветке мерцающими светодиодами каких-либо движущихся объектов, например, лопастей вентилятора, колес велосипеда и т.п., неизбежно будет возникать стробоскопический эффект. В некоторых случаях данный эффект может быть неприемлем или даже опасен. Например, при работе за станком может показаться, что фреза неподвижна, а на самом деле она вращается с бешенной скоростью и только и ждет, чтобы вы сунули туда пальцы.

Чтобы сделать пульсации менее заметными, можно удвоить частоту включения светодиода с помощью двухполупериодного выпрямителя (диодного моста):

Обратите внимание, что по сравнению со схемой #2 при том же самом сопротивлении резисторов, мы получили в два раза больший средний ток. И, соответственно, в четыре раза большую мощность рассеивания резисторов.

К диодному мосту при этом не предъявляется каких-либо особых требований, главное, чтобы диоды, из которых он состоит, выдерживали половину рабочего тока светодиода. Обратное напряжение на каждом из диодов будет совсем ничтожным.

Еще, как вариант, можно организовать встречно-параллельное включение двух светодиодов. Тогда один из них будет гореть во время положительной полуволны, а второй — во время отрицательной.

Фишка в том, что при таком включении максимальное обратное напряжение на каждом из светодиодов будет равно прямому напряжению другого светодиода (несколько вольт максимум), поэтому каждый из светодиодов будет надежно защищен от пробоя.

Светодиоды следует разместить как можно ближе друг к другу. В идеале — попытаться найти сдвоенный светодиод, где оба кристалла размещены в одном корпусе и у каждого свои выводы (хотя я таких ни разу не видел).

Вообще говоря, для светодиодов, выполняющих индикаторную функцию, величина пульсаций не очень-то и важна. Для них самое главное — это максимально заметная разница между включенным и выключенным состоянием (индикация вкл/выкл, воспроизведение/запись, заряд/разряд, норма/авария и т.п.)

А вот при создании светильников, всегда нужно стараться свести пульсации к минимуму. И не столько из-за опасностей стробоскопического эффекта, сколько из-за их вредного влияния на организм.

Какие пульсации считаются допустимыми?

Все зависит от частоты: чем она ниже, тем заметнее пульсации. На частотах выше 300 Гц пульсации становятся совершенно невидимыми и вообще никак не нормируются, то есть даже 100%-ные считаются нормой.

Не смотря на то, что пульсации освещенности на частотах 60-80 Гц и выше визуально не воспринимаются, тем не менее, они способны вызывать повышенную усталость глаз, общую утомляемость, тревожность, снижение производительности зрительной работы и даже головные боли.

Для предотвращения вышеперечисленных последствий, международный стандарт IEEE 1789-2015 рекомендует максимальный уровень пульсаций яркости для частоты 100 Гц — 8% (гарантированно безопасный уровень — 3%). Для частоты 50 Гц — это будут 1.25% и 0.5% соответственно. Но это для перфекционистов.

На самом деле, для того, чтобы пульсации яркости светодиода перестали хоть как-то досаждать, достаточно, чтобы они не превышали 15-20%. Именно таков уровень мерцания ламп накаливания средней мощности, а ведь на них никто и никогда не жаловался. Да и наш российский СНиП 23-05-95 допускает мерцание света в 20% (и только для особо кропотливых и ответственных работ требование повышено до 10%).

В соответствии с ГОСТ 33393-2015 «Здания и сооружения. Методы измерения коэффициента пульсации освещенности» для оценки величины пульсаций вводится специальный показатель — коэффициент пульсаций (Кп).

Коэфф. пульсаций в общем рассчитывается по сложной формуле с применением интегральной функции, но для гармонических колебаний формула упрощается до следующей:

Кп = (Еmax — Emin) / (Emax + Emin) ⋅ 100%,

где Емах — максимальное значение освещенности (амплитудное), а Емин — минимальное.

Мы будем использовать эту формулу для расчета емкости сглаживающего конденсатора.

Очень точно определить пульсации любого источника света можно при помощи солнечной панели и осциллографа:

Как уменьшить пульсации?

Посмотрим, как включить светодиод в сеть 220 вольт, чтобы снизить пульсации. Для этого проще всего подпаять параллельно светодиоду накопительный (сглаживающий) конденсатор:

Из-за нелинейного сопротивления светодиодов, расчет емкости этого конденсатора является довольно нетривиальной задачей.

Однако, эту задачу можно упростить, если сделать несколько допущений. Во-первых, представить светодиод в виде эквивалентного постоянного резистора:

А во-вторых, сделать вид, что яркость светодиода (а, следовательно, и освещенность) имеет линейную зависимость от тока.

Давайте попробуем приблизительно рассчитать емкость конденсатора на конкретном примере.

Расчет емкости сглаживающего конденсатора

Допустим, мы хотим получить коэфф. пульсаций 2.5% при токе через светодиод 20 мА. И пусть в нашем распоряжении оказался светодиод, на котором при токе в 20 мА падает 2 В. Частота сети, как обычно, 50 Гц.

Так как мы решили, что яркость линейно зависит от тока через светодиод, а сам светодиод мы представили в виде простого резистора, то освещенность в формуле расчета коэффициента пульсаций можем спокойно заменить на напряжение на конденсаторе:

Кп = (Umax — Umin) / (Umax + Umin) ⋅ 100%

Подставляем исходные данные и вычисляем Umin:

2.5% = (2В — Umin) / (2В + Umin) 100% => Umin = 1.9В

Период колебаний напряжения в сети равен 0.02 с (1/50).

Таким образом, осциллограмма напряжения на конденсаторе (а значит и на нашем упрощенном светодиоде) будет выглядеть примерно вот так:

Вспоминаем тригонометрию и считаем время заряда конденсатора (для простоты не будем учитывать сопротивление балластного резистора):

tзар = arccos(Umin/Umax) / 2πf = arccos(1. 9/2) / (23.141550) = 0.0010108 с

Весь остальной остаток периода кондер будет разряжаться. Причем, период в данном случае нужно сократить в два раза, т.к. у нас используется двухполупериодный выпрямитель:

tразр = Т — tзар = 0.02/2 — 0.0010108 = 0.008989 с

Осталось вычислить емкость:

C = ILEDdt/dU = 0.02 0.008989/(2-1.9) = 0.0018 Ф (или 1800 мкФ)

На практике вряд ли кто-то будет ставить такой большой кондер ради одного маленького светодиодика. Хотя, если стоит задача получить пульсации в 10%, то нужно всего 440 мкФ.

Повышаем КПД

Обратили внимание, насколько большая мощность выделяется на гасящем резисторе? Мощность, которая тратится впустую. Нельзя ли ее как-нибудь уменьшить?

Оказывается, еще как можно! Достаточно вместо активного сопротивления (резистора) взять реактивное (конденсатор или дроссель).

Дроссель мы, пожалуй, сразу откинем из-за его громоздкости и возможных проблем с ЭДС самоиндукции. А насчет конденсаторов можно подумать.

Как известно, конденсатор любой емкости обладает бесконечным сопротивлением для постоянного тока. А вот сопротивление переменному току рассчитывается по этой формуле:

Rc = 1 / 2πfC

то есть, чем больше емкость C и чем выше частота тока f — тем ниже сопротивление.

Прелесть в том, что на реактивном сопротивлении и мощность тоже реактивная, то есть ненастоящая. Она как бы есть, но ее как бы и нет. На самом деле эта мощность не совершает никакой работы, а просто возвращается назад к источнику питания (в розетку). Бытовые счетчики ее не учитывают, поэтому платить за нее не придется. Да, она создает дополнительную нагрузку на сеть, но вас, как конечного потребителя, это вряд ли сильно обеспокоит =)

Таким образом, наша схема питания светодиодов от 220В своими руками приобретает следующий вид:

Но! Именно в таком виде ее лучше не использовать, так как в этой схеме светодиод уязвим для импульсных помех.

Включение или выключение распложенных на одной с вами линии мощной индуктивной нагрузки (двигатель кондиционера, компрессор холодильника, сварочный аппарат и т.п.) приводит к появлению в сети очень коротких выбросов напряжения. Конденсатор С1 представляет для них практически нулевое сопротивление, следовательно мощный импульс направится прямиком к С2 и VD5.

К сожалению, электролитические конденсаторы, из-за своей большой паразитной индуктивности, плохо справляются с ВЧ-помехами, поэтому большая часть энергии импульса пойдет через p-n-переход светодиода.

Еще один опасный момент возникает в случае включения схемы в момент пучности напряжения в сети (т.е. в тот самый момент, когда напряжение в розетке находится на пике своего значения). Т.к. С1 в этот момент полностью разряжен, то возникает слишком большой бросок тока через светодиод.

Все это со временем это приводит к прогрессирующей деградации кристалла и падению яркости свечения.

Во избежание таких печальных последствий, схему нужно дополнить небольшим гасящим резистором на 47-100 Ом и мощностью 1 Вт. Кроме того, резистор R1 будет выступать в роли предохранителя на случай пробоя конденсатора С1.

Получается, что схема включения светодиода в сеть 220 вольт должна быть такой:

И остается еще один маленький нюанс: если выдернуть эту схему из розетки, то на конденсаторе С1 останется какой-то заряд. Остаточное напряжение будет зависеть от того, в какой момент была разорвана цепь питания и в отдельных случаях может превышать 300 вольт.

А так как конденсатору некуда разряжаться, кроме как через свое внутреннее сопротивление, то заряд может сохраняться очень долго (сутки и более). И все это время кондер будет ждать вас или вашего ребенка, через которого можно будет как следует разрядиться. Причем, для того, чтобы получить удар током, не нужно лезть в недра схемы, достаточно просто прикоснуться к обоим контактам штепсельной вилки.

Чтобы помочь кондеру избавиться от ненужного заряда, подключим параллельно ему любой высокоомный резистор (например, на 1 МОм). Этот резистор не будет оказывать никакого влияния на расчетный режим работы схемы. Он даже греться не будет.

Таким образом, законченная схема подключения светодиода к сети 220В (с учетом всех нюансов и доработок) будет выглядеть так:

Значение емкости конденсатора C1 для получения нужного тока через светодиод можно сразу взять из Таблицы 2, а можно рассчитать самостоятельно.

Вот здесь можно посмотреть, как еще сильнее усовершенствовать данную схему, добавив в нее стабилизатор тока на одном транзисторе и стабилитроне. Это существенно понизит пульсации и продлит срок службы светодиодов.

Расчет гасящего конденсатора для светодиода

Не буду приводить утомляющие математические выкладки, дам сразу готовую формулу емкости (в Фарадах):

C = I / (2πf√(U2вх — U2LED)) [Ф],

где I — ток через светодиод, f — частота тока (50 Гц), Uвх — действующее значение напряжения сети (220В), ULED — напряжение на светодиоде.

Если расчет ведется для небольшого числа последовательно включенных светодиодов, то выражение √(U2вх — U2LED) приблизительно равно Uвх, следовательно формулу можно упростить:

C ≈ 3183 ⋅ ILED / Uвх [мкФ]

а, раз уж мы делаем расчеты под Uвх = 220 вольт, то:

C ≈ 15 ⋅ ILED [мкФ]

Таким образом, при включении светодиода на напряжение 220 В, на каждые 100 мА тока потребуется примерно 1. 5 мкФ (1500 нФ) емкости.

Кто не в ладах с математикой, заранее посчитанные значения можно взять из таблицы ниже.

Таблица 2. Зависимость тока через светодиоды от емкости балластного конденсатора.

C115 nF68 nF100 nF150 nF330 nF680 nF1000 nF
ILED1 mA4.5 mA6.7 mA10 mA22 mA45 mA67 mA

Немного о самих конденсаторах

В качестве гасящих рекомендуется применять помехоподавляющие конденсаторы класса Y1, Y2, X1 или X2 на напряжение не менее 250 В. Они имеют прямоугольный корпус с многочисленными обозначениями сертификатов на нем. Выглядят так:

Если вкратце, то:

  • X1 – используются в промышленных устройствах, подключаемых к трехфазной сети. Эти конденсаторы гарантированно выдерживают всплеск напряжения в 4 кВ;
  • X2 – самые распространенные. Используются в бытовых приборах с номинальным напряжением сети до 250 В, выдерживают скачек до 2.5 кВ;
  • Y1 – работают при номинальном сетевом напряжении до 250 В и выдерживают импульсное напряжение до 8 кВ;
  • Y2 – довольно-таки распространенный тип, может быть использован при сетевом напряжении до 250 В и выдерживает импульсы в 5 кВ.

Допустимо применять отечественные пленочные конденсаторы К73-17 на 400 В (а лучше — на 630 В).

Сегодня широкое распространение получили китайские «шоколадки» (CL21), но в виду их крайне низкой надежности, очень рекомендую удержаться от соблазна применять их в своих схемах. Особенно в качестве балластных конденсаторов.

Внимание! Полярные конденсаторы ни в коем случае нельзя использовать в качестве балластных!

Итак, мы рассмотрели, как подключать светодиод к 220В (схемы и их расчет). Все приведенные в данной статье примеры хорошо подходят для одного или нескольких маломощных светодиодов, но совершенно нецелесообразны для мощных светильников, например, ламп или прожекторов — для них лучше использовать полноценные схемы, которые называются драйверами.

Светодиод от 220 вольт схема

Подключение светодиода к 220 вольтам, схемы, примеры (видео, калькулятор)

При конструировании радиоаппаратуры часто встает вопрос о индикации питания. Век ламп накаливания для индикации уже давно прошел, современным и надежным радиоэлементом индикации на настоящий момент является светодиод. В данной статье будет предложена схема подключения светодиода к 220 вольтам, то есть рассмотрена возможность запитать светодиод от бытовой сети переменного тока — розетки, которая есть в любой благоустроенной квартире.
Если вам необходимо будет запитать несколько светодиодов одновременно, то об этом мы также упомянем в нашей статье. Фактически такие схемы применяются для светодиодных гирлянд или ламп, это немного другое. Фактически здесь необходимо реализовать так называемый драйвер для светодиодов. Итак, давайте не будем все валить в одну кучу. Попробуем разобраться по порядку.

Принцип понижения напряжения питания для светодиода

Для питания низковольтной нагрузки может быть выбрана два пути питания. Первый, это так скажем классический вариант, когда питание снижается за счет резистора. Второй, вариант, который часто используется для зарядных устройств, это гасящий конденсатор. В этом случае напряжение и ток идут словно импульсами, и эти самые импульсы и должны быть точно подобраны, дабы светодиод, нагрузка не сгорела. Здесь необходимо более детальный расчет чем с резистором. Третий вариант, это комбинированное питание, когда применяется и тот и другой способ понижения напряжения. Что же, теперь обо всех этих вариантах по порядку.

Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор)

Схема подключения светодиода к 220 вольтам на вид не сложная, принцип ее работы прост. Алгоритм следующий. При подаче напряжения начинает заряжаться конденсатор С1, при этом фактически с одной стороны он заряжается напрямую, а со второй через стабилитрон. Стабилитрон должен соответствовать напряжению свечения светодиода. Так в итоге полностью заряжается конденсатор. Далее приходит вторая полуволна, когда конденсатор начинает разряжаться. В этом случае напряжение также идет через стабилитрон, который теперь работает в своем штатном режиме и через светодиод. В итоге на светодиод в это время подается напряжение равное напряжению стабилизации стабилитрона. Здесь важно подобрать стабилитрон с тем же номиналом, что и светодиод.

Здесь все вроде как просто и теоретически реализуется нормально. Однако точные расчеты не столь просты. Ведь по сути надо рассчитать емкость конденсатора, который будет являться в данном случае гасящим. Делается это по формуле.

Прикинем: 3200*0,02/√(220*220-3*3)=0,29 мКФ. Вот какой должен быть конденсатор при напряжении для светодиода 3 вольта, а токе 0,02 А. Вы же можете подставить свои значения и рассчитать свой вариант.

Радиодетали для подключения светодиода к 220 вольтам

Мощность резистора может быть минимальной вполне подойдет 0.25 Вт (номинал на схеме в омах).
Конденсатор (емкость указана в микрофарадах) лучше подобрать с запасом, то есть с рабочим напряжением в 300 вольт.
Светодиод может быть любой, например с напряжением свечения от 2 вольт АЛ307 БМ или АЛ 307Б и до 5.5 воль — это КЛ101А или КЛ101Б.
Стабилитрон как мы уже упоминали должен соответствовать напряжению питания светодиода, так для 2 вольт это КС130Д1 или КС133А (напряжение стабилизации 3 и 3.3 вольта соответственно), а для 5.5 вольт КС156А или КС156Г

Такой способ имеет свои недостатки, так как при незначительном скачке напряжения или отклонении в работе конденсатора, можем получить напряжения куда более высокое нежели 3 вольта. Светодиод сгорит в один момент. Плюсом является экономичность схемы, так как она импульсная. Скажем так, не высокая надежность, но экономичность. Теперь о варианте комбинированном.

Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор + резистор)

Здесь все тоже самое, за исключением того, что в цепочку добавили резистор. В целом влияние резистора способно сделать всю схему более предсказуемое, более надежной. Здесь будет меньше импульсных токов с высоким напряжением. Это хорошо!

(. как и н на схеме выше использован гасящий конденсатор + резистор)

Все плюсы и минусы сродни варианту с гасящим конденсатором, но надежности здесь тоже нет. Даже более, того, использование диода, а не стабилитрона, скажется на защите светодиода при разрядке конденсатора. То есть весь ток потечет именно через светодиод, а не как в предыдущем случае через светодиод и стабилитрон. Вариант этот так себе. И вот последний случай, с применением резистора.

Схема подключения светодиода к напряжению 220 вольт (резистор)

Именно эти схемы мы вам рекомендуем к сборке. Здесь все по классическим принципам, закону Ома и формуле расчета мощности. Первое, рассчитаем сопротивление. При расчете сопротивления будет пренебрегать внутренним сопротивлением светодиода и падением напряжения на нем. В этом случае получим небольшой запас, так как фактическое падение напряжения на нем, позволит ему работать в режиме чуть более щадящем, нежели предписано характеристиками. Итак, скажем у нас ток светодиода 0,01 А и 3 вольта.

R=U/I=220/0,01=22000 Ом=22 кОм. В схеме же 15 кОм, то есть ток приняли 0,014666 А, что вполне допустимо. Вот так и рассчитываются резисторы для этих случаев. Единственное здесь все будет зависеть от того, сколько резисторов вы применяете. Если два как на первой схеме, то делим получившийся результат пополам.

Если один, то само собой все напряжение будет падать только на нем.

Ну, как и положено, скажем о плюсах и минусах. Плюс один и очень большой, схема очень надежная. Минус тоже один, то что все напряжение будет падать на 1-2 резисторе, а значит он будет рассеивать большую мощность. Давайте прикинем. P=U*I=220*0,02=4,4 Ватта. То есть аж 4 Ватта должен быть резистор, если ток будет 0,02 А. В этом случае стоит щепетильно подойти к выбору резистора, он должен быть не менее 3-4 Ватт. Ну и сами понимаете, что об экономичности в этом случае речи не идет, когда на резисторе рассеивается 4 Ватта, а светодиодом можно пренебречь. Фактически это почти как маленькая светодиодная лампа, а горит всего лишь 1 светодиод.

Подключение нескольких светодиодов к 220 вольтам

Когда вам необходимо подключить сразу несколько светодиодов, это несколько друга история. Фактически такие вариации схемы, еще вернее схемы стабилизатора для светодиодов называют драйвером. Видимо от слова drive (англ.) в движении. То есть вроде как схема запускающая в работу группу светодиодов. Не будем говорить о корректности применения данного слова и о новых словах, которые мы постоянно заимствуем из других языков. Скажем лишь, что это несколько иной вариант, а значит и разбирать его мы будем в другой нашей статье «Драйвер для светодиодов (светодиодной лампы)».

Видео о подключении светодиода к сети 220 вольт

А теперь тоже самое, но на видео, для тех кто видимо ленился читать;)

Итак, если хотите подключить светодиод надежно, но чуть с завышенными энергозатратами, то вам к сборке рекомендуется последних два варианта из статьи. Для всех ищущих приключений — первый вариант в самый раз!

Ну и напоследок калькулятор для тех, кто не в состоянии осилить подсчеты по формулам сам или лень;)

Подключение светодиода к сети 220в

Обычно светодиоды подключаются к 220В при помощи драйвера, рассчитанного под их характеристики. Но если требуется подключить только один маломощный светодиод, например, в качестве индикатора, то применение драйвера становится нецелесообразным. В таких случаях возникает вопрос — как подключить светодиод к 220 В без дополнительного блока питания.

Основы подключения к 220 В

В отличие от драйвера, который питает светодиод постоянным током и сравнительно небольшим напряжением (единицы-десятки вольт), сеть выдает переменное синусоподобное напряжение с частотой 50 Гц и средним значением 220 В. Поскольку светодиод пропускает ток только в одну сторону, то светиться он будет только на определенных полуволнах:

То есть led при таком питании светится не постоянно, а мигает с частотой 50 Гц. Но из-за инерционности человеческого зрения это не так заметно.

В то же время напряжение обратной полярности, хотя и не заставляет led светиться, все же прикладывается к нему и может вывести из строя, если не предпринять никаких защитных мер.

Способы подключения светодиода к сети 220 В

Самый простой способ (читайте про все возможные способы подключения led) – подключение при помощи гасящего резистора, включенного последовательно со светодиодом. При этом нужно учесть, что 220 В – это среднеквадратичное значение U в сети. Амплитудное значение составляет 310 В, и его нужно учитывать при расчете сопротивления резистора.

Кроме того, необходимо обеспечить защиту светоизлучающего диода от обратного напряжения той же величины. Это можно сделать несколькими способами.

Последовательное подключение диода с высоким напряжением обратного пробоя (400 В и более).

Рассмотрим схему подключения более подробно.

В схеме используется выпрямительный диод 1N4007 с обратным напряжением 1000 В. При изменении полярности все напряжение будет приложено именно к нему, и led оказывается защищенным от пробоя.

Такой вариант подключения наглядно показан в этом ролике:

Также здесь описывается, как определить расположение анода и катода у стандартного маломощного светодиода и рассчитать сопротивление гасящего резистора.

Шунтирование светодиода обычным диодом.

Здесь подойдет любой маломощный диод, включенный встречно-параллельно с led. Обратное напряжение при этом будет приложено к гасящему резистору, т.к. диод оказывается включенным в прямом направлении.

Встречно-параллельное подключение двух светодиодов:

Схема подключения выглядит следующим образом:

Принцип аналогичен предыдущему, только здесь светоизлучающие диоды горят каждый на своем участке синусоиды, защищая друг друга от пробоя.

Обратите внимание, что подключение светодиода к питанию 220В без защиты ведет к быстрому выходу его из строя.

Схемы подключения к 220В при помощи гасящего резистора обладают одним серьезным недостатком: на резисторе выделяется большая мощность.

Например, в рассмотренных случаях используется резистор сопротивлением 24 Ком, что при напряжении 220 В обеспечивает ток около 9 мА. Таким образом, мощность, рассеиваемая на резисторе, составляет:

9 * 9 * 24 = 1944 мВт, приблизительно 2 Вт.

То есть для оптимального режима работы потребуется резистор мощностью не менее 3 Вт.

Если же светодиодов будет несколько, и они будут потреблять больший ток, то мощность будет расти пропорционально квадрату тока, что сделает применение резистора нецелесообразным.

Применение резистора недостаточной мощности ведет к его быстрому перегреву и выходу из строя, что может вызвать короткое замыкание в сети.

В таких случаях в качестве токоограничивающего элемента можно использовать конденсатор. Преимущество этого способа в том, что на конденсаторе не рассеивается мощность, поскольку его сопротивление носит реактивный характер.

Здесь показана типовая схема подключения светоизлучающего диода в сеть 220В при помощи конденсатора. Поскольку конденсатор после отключения питания может хранить в себе остаточный заряд, представляющий опасность для человека, его необходимо разряжать при помощи резистора R1. R2 защищает всю схему от бросков тока через конденсатор при включении питания. VD1 защищает светодиод от напряжения обратной полярности.

Конденсатор должен быть неполярным, рассчитанным на напряжение не менее 400 В.

Применение полярных конденсаторов (электролит, тантал) в сети переменного тока недопустимо, т.к. ток, проходящий через них в обратном направлении, разрушает их конструкцию.

Емкость конденсатора рассчитывается по эмпирической формуле:

где U – амплитудное напряжение сети (310 В),

I – ток, проходящий через светодиод (в миллиамперах),

Uд – падение напряжения на led в прямом направлении.

Допустим, нужно подключить светодиод с падением напряжения 2 В при токе 9 мА. Исходя из этого, рассчитаем емкость конденсатора при подключении одного такого led к сети:

Данная формула действительна только для частоты колебаний напряжения в сети 50 Гц. На других частотах потребуется пересчет коэффициента 4,45.

Нюансы подключения к сети 220 В

При подключении led к сети 220В существуют некоторые особенности, связанные с величиной проходящего тока. Например, в распространенных выключателях освещения с подсветкой, светодиод включается по схеме, изображенной ниже:

Как видно, здесь отсутствуют защитные диоды, а сопротивление резистора выбрано таким образом, чтобы ограничить прямой ток led на уровне около 1 мА. Нагрузка в виде лампы также служит ограничителем тока. При такой схеме подключения светодиод будет светиться тускло, но достаточно для того, чтобы разглядеть выключатель в комнате в ночное время. Кроме того, обратное напряжение будет приложено в основном к резистору при разомкнутом ключе, и светоизлучающий диод оказывается защищенным от пробоя.

Если требуется подключить к 220В несколько светодиодов, можно включить их последовательно на основе схемы с гасящим конденсатором:

При этом все led должны быть рассчитаны на одинаковый ток для равномерного свечения.

Можно заменить шунтирующий диод встречно-параллельным подключением светодиодов:

В обоих случаях нужно будет пересчитать величину емкости конденсатора, т. к. возрастет напряжение на светодиодах.

Параллельное (не встречно-параллельное) подключение led в сеть недопустимо, поскольку при выходе одной цепи из строя через другую потечет удвоенный ток, что вызовет перегорание светодиодов и последующее короткое замыкание.

Еще несколько вариантов недопустимого подключения светоизлучающих диодов в сеть 220В описаны в этом видео:

Здесь показано, почему нельзя:

  • включать светодиод напрямую;
  • последовательно соединять светодиоды, рассчитанные на разный ток;
  • включать led без защиты от обратного напряжения.

Безопасность при подключении

При подключении к 220В следует учитывать, что выключатель освещения обычно размыкает фазный провод. Ноль при этом проводится общим по всему помещению. Кроме того, электросеть зачастую не имеет защитного заземления, поэтому даже на нулевом проводе присутствует некоторое напряжение относительно земли. Также следует иметь в виду, что в некоторых случаях провод заземления подключается к батареям отопления или водопроводным трубам. Поэтому при одновременном контакте человека с фазой и батареей, особенно при монтажных работах в ванной комнате, есть риск попасть под напряжение между фазой и землей.

В связи с этим, при подключении в сеть лучше отключать и ноль, и фазу при помощи пакетного автомата во избежание поражения током при прикосновении к токоведущим проводам сети.

Заключение

Описанные здесь способы подключения светодиодов в сеть 220В целесообразно применять только при использовании маломощных светоизлучающих диодов в целях подсветки или индикации. Мощные led так подключать нельзя, поскольку нестабильность сетевого напряжения приводит к их быстрой деградации и выходу из строя. В таких случаях нужно применять специализированные блоки питания светодиодов – драйверы.

Варианты схем как подключить светодиод к 220 вольтам (для световой индикации). Включение светодиода к сети 220 В.

Порой возникает необходимость в подключении обычного, маломощного светодиода к переменному, сетевому напряжению 220 вольт в роли светового индикатора. Казалось бы нет ничего проще, чем взять и поставить последовательно светодиоду обычный резистор, который бы ограничивал силу тока в данной цепи. Но не все так просто. В этой статье давайте с вами рассмотрим наиболее распространенные варианты такого подключения, после чего можно будет выбрать наиболее лучшую схему с учетом имеющихся достоинств и недостатков.

Вариант №1 » последовательное включение светодиода и резистора.

Итак, первым вариантом все же будет схема, где последовательно к светодиоду подключается обычный резистор с нужным сопротивлением. Величину сопротивления можно вычислить по закону ома. Допустим у нас светодиод, рассчитанный на напряжение 3 вольта и потребляющий 9 миллиампер. Напряжение питания (220 В) разделится между резистором и светодиодом. Если на светодиоде осядет 3 вольта, то на резисторе осядет около 217 вольт. Ток в последовательных цепях во всех точках одинаковый (в нашем случае он будет равен 9 мА). И чтобы узнать сопротивление резистора мы 217 вольт делим на 9 миллиампер и получаем 24 килоома (24000 ом).

Теоретически эта схема подключения светодиода к сети 220 вольт рабочая, но практически она скорее всего сгорит сразу при включении. Почему это так. Дело в том, что большинство обычных светодиодов рассчитаны на напряжение питания (при прямом своем включении, то есть плюс светодиода к плюсу источника питания и минус светодиода к минусу источника питания), где-то в пределах от 2,5 до 4,5 вольта. При прямом включении на светодиоде будет его рабочее напряжение (пусть 3 вольта), а излишек (217 вольт) осядет на резисторе. Обратное напряжение у светодиодов не такое уж и высокое (где-то около 30 вольт). И когда обратная полуволна переменного напряжения подается на светодиод, то светодиод просто выйдет из строя из-за слишком большого обратного напряжения, поданного на него. Напомню, что полупроводники при обратном включении имеют очень большое внутреннее сопротивление (гораздо большее чем стоящий в цепи резистор). Следовательно все сетевое напряжение осядет именно на светодиоде.

Вариант №2 » подключение светодиода с защитой от обратного напряжения.

В этом варианте схемы подключения индикаторного светодиода к сетевому напряжению 220 вольт имеется защита от чрезмерного высокого напряжения обратной полуволны, что подается на светодиод. То есть, в цепь добавлен обычный диод, который включен той же полярностью, что и светодиод. В итоге все излишнее высокое напряжение оседает на полупроводниках (при обратном включении питания, обратной полуволне переменного тока). Тот ток, что возникает в цепи при обратной полуволне настолько настолько мал, что его не хватает для пробития светодиода при обратном его включении. Таким образом данная схема уже будет нормально работать. Хотя в этом варианте все же имеются свои недостатки, а именно будет достаточно сильно греться резистор. Его мощность должна быть не менее 2 Вт. Этот нагрев приводит к тому, что схема весьма не экономна, у нее низкий КПД. Помимо этого поскольку светодиод будет светить только при одной полуволне, то рабочая частота светодиода будет равна 25 Гц. Свечение светодиода при такой частоте будет восприниматься глазом с эффектом мерцания.

Вариант №3 » альтернативная схема подключения светодиода к 220 с защитой от обратного напряжения.

Эта схема похожа не предидущую. Она также имеет защиту от чрезмерного напряжения обратной полуволны переменного напряжения. Если в первой схеме защитный диод стоял последовательно со светодиодом, то в данной схеме диод подключен параллельно, и имеет уже обратное включение относительно светодиоду. При одной полуволне переменного напряжения будет гореть индикаторный светодиод (на котором будет падение напряжения до рабочей величины светодиода), а при обратной полуволне диод будет находится в открытом состоянии и на нем также будет падение напряжения до величины (порядка 1 вольта) недостаточной для пробоя светодиода. Как и в предыдущей схеме недостатками будет значительный нагрев резистора и видимое мерцание светодиода, вдобавок эта схема будет больше потреблять электроэнергии из-за прямого включения диода.

Хотя вместо обычного диода можно поставить еще один светодиод.

Тогда в одну полуволну будет гореть один светодиод, ну а в обратную второй. Хотя в этом случае и будут светодиоды обезопасены от высокого обратного напряжения, но гореть каждый из них будет все равно с частотой 25 герц (будут оба мерцать).

Вариант №4 » лучшая схема с токоограничительным кондесатором, резистором и выпрямительным мостом.

Данный вариант схемы подключения индикаторного светодиода к сети 220 вольт считаю наиболее лучшим. Единственным недостатком (если можно так сказать) этой схемы является то, что в ней больше всего деталей. К достоинствам же можно отнести то, что в ней нет элементов, которые чрезмерно нагревались, поскольку стоит диодный мост, то светодиод работает с двумя полупериодами переменного напряжения, следовательно нет заметных для глаза мерцаний. Потребляет эта схема меньше всего электроэнергии (экономная).

Работает данная схема следующим образом. Вместо токоограничительного резистора (который был в предыдущих схемах на 24 кОм) стоит конденсатор, что исключает нагрев данного элемента. Этот конденсатор обязательно должен быть пленочного типа (не электролит) и рассчитан на напряжение не менее 250 вольт (лучше ставить на 400 вольт). Именно подбором его емкости можно регулировать величину силы тока в схеме. В таблице на рисунке приведены емкости конденсатора и соответствующие им токи. Параллельно конденсатору стоит резистор, задача которого сводится всего лишь к разряду конденсатора после отключения схемы от сети 220 вольт. Активной роли в самой схеме запитки индикаторного светодиода от 220 В он не принимает.

Далее стоит обычный выпрямительный диодный мост, который из переменного тока делает постоянный. Подойдут любые диоды (готовый диодный мост), у которых максимальная сила тока будет больше тока, потребляемого самим индикаторным светодиодом. Ну и обратное напряжение этих диодов должно быть не менее 400 вольт. Можно поставить наиболее популярные диоды серии 1N4007. Они дешево стоят, малы по размерам, рассчитаны на ток до 1 ампера и обратное напряжение 1000 вольт.

В схеме есть еще один резистор, токоограничительный, но он нужен для ограничения тока, который возникает от случайных всплесков напряжения, идущие от самой сети 220 вольт. Допусти если кто-то по соседству использует мощные устройства, содержащие катушки (индуктивный элемент, способствующий кратковременным всплескам напряжения), то в сети образуется кратковременное увеличение сетевого напряжения. Конденсатор данный всплеск напряжения пропускает беспрепятственно. А поскольку величина тока этого всплеска достаточна для того, чтобы вывести из строя индикаторный светодиод в схеме предусмотрен токоограничительный резистор, защищающий схему от подобный перепадов напряжения в электрической сети. Этот резистор нагревается незначительно, в сравнении с резисторами в предыдущих схемах. Ну и сам индикаторный светодиод. Его вы выбираете уже сами, его яркость, цвет, размеры. После выбора светодиода подбирайте соответствующий конденсатор нужной емкости руководствуясь таблицей на рисунке.

Питание светодиодов от 220В своими руками — схема подключения

Без светодиодов трудно обойтись при проектировании электронной аппаратуры, а также при изготовлении экономичных осветительных приборов. Их надежность, простота монтажа и относительная дешевизна привлекают внимание разработчиков бытовых и промышленных светильников. Поэтому многих пользователей интересуют схемные решения по включению светодиода, предполагающие прямую подачу на него фазного напряжения. Неспециалистам в области электроники и электрики полезно будет узнать, как подключить светодиод к 220В.

Технические особенности диода

По определению светодиод, схема которого схожа с обычным диодом, – это тот же полупроводник, пропускающий ток в одном направлении и излучающий свет при его протекании. Его рабочий переход не рассчитан на высокие напряжения, поэтому для загорания светодиодного элемента вполне достаточно всего нескольких вольт. Другой особенностью этого прибора является необходимость подачи на него постоянного напряжения, так как при переменных 220 Вольт светодиод будет мигать с частотой сети (50Герц). Считается, что глаз человека не реагирует на такие мигания и что они не причиняют ему вреда. Но все же согласно действующим стандартам для его работы нужно использовать постоянный потенциал. В противном случае приходится применять особые меры защиты от опасных обратных напряжений.

Большинство образцов осветительной техники, в которых диоды используются в качестве элементов освещения, включаются в сеть через специальные преобразователи – драйверы. Эти устройства необходимы для получения из исходного сетевого напряжения постоянных 12, 24, 36 или 48 Вольт. Несмотря на их широкое распространение в быту нередки ситуации, когда обстоятельства вынуждают обходиться без драйвера. В этом случае важно уметь включать светодиоды в 220 В.

Полюса светодиода

Чтобы ознакомиться со схемами включения и распайкой диодного элемента, нужно узнать, как выглядит распиновка светодиода. В качестве его графического обозначения используется треугольник, к одному из углов которого примыкает короткая вертикальная полоса – на схеме она называется катодом. Он считается выходным для постоянного тока, втекающего с обратной стороны. Туда подается положительный потенциал от источника питания и поэтому входной контакт называется анодом (по аналогии с электронными лампами).

Выпускаемые промышленностью светодиоды имеют всего два вывода (реже – три или даже четыре). Известны три способа определения их полярности:

  • визуальный метод, позволяющий определить анод элемента по характерному выступу на одной из ножек;
  • с помощью мультиметра в режиме «Проверка диодов»;
  • посредством блока питания с постоянным выходным напряжением.

Для определения полярности вторым способом плюсовой конец измерительного шнура тестера в красной изоляции подсоединяется к одному контактному выводу диода, а черный минусовой – к другому. Если прибор показывает прямое напряжение порядка полвольта, со стороны плюсового конца расположен анод. Если на табло индикации появляется знак бесконечности или «0L», с этого конца располагается катод.

При проверке от источника питания на 12 Вольт его плюс следует соединить с одним концом светодиода через ограничивающий резистор 1 кОм. Если диод загорается, его анод находится со стороны плюса блока питания, а если нет – с другого конца.

Способы подключения

Простейший подход к решению проблемы недопустимого для диода обратного напряжения – установка последовательно с ним дополнительного резистора, который способен ограничить 220 Вольт. Этот элемент получил название гасящего, так как он «рассеивает» на себе излишки мощности, оставляя светодиоду необходимые для его работы 12-24 Вольта.

Последовательная установка ограничивающего резистора также решает проблему обратного напряжения на переходе диода, которое снижается до тех же величин. В качестве модификации последовательного включения с ограничением напряжения рассматривается смешанная или комбинированная схема подключения светодиодов в 220 В. В ней на один резистор последовательный резистор приходится несколько параллельно соединенных диодов.

Подключение светодиода можно организовать по схеме, в которой вместо резистора используется обычный диод, имеющий высокое напряжение обратного пробоя (желательно – до 400 Вольт и более). Для этих целей удобнее всего взять типовое изделие марки 1N4007 с заявленным в характеристиках показателем до 1000 Вольт. При его установке в последовательную цепочку (при изготовлении гирлянды, например), обратная часть волны выпрямляется полупроводниковым диодом. Он в этом случае выполняет функцию шунта, защищающего чип светового элемента от пробоя.

Шунтирование светодиода обычным диодом (встречно-параллельное подключение)

Другой распространенный вариант «нейтрализации» обратной полуволны состоит в использовании совместно с гасящим резистором еще одного светодиода, включаемого параллельно и навстречу первому элементу. В этой схеме обратное напряжение «замыкается» через параллельно подключенный диод и ограничивается дополнительным сопротивлением, включенным последовательно.

Такое соединение двух светодиодов напоминает предыдущий вариант, но с одним отличием. Каждый из них работает со «своей» частью синусоиды, обеспечивая другому элементу защиту от пробоя.

Существенный недостаток схемы подключения через гасящий резистор – значительная величина непроизводительно расходуемой мощности, выделяемой на нем вхолостую.

Подтверждением этому является следующий пример. Пусть используется гасящий резистор номиналом 24 кОм и светодиод с рабочим током 9 мА. Рассеиваемая на сопротивлении мощность будет равна 9х9х24=1944 мВт (после округления – порядка 2-х Ватт). Чтобы резистор работал в оптимальном режиме, он выбирается со значением P не менее 3 Вт. На самом светодиоде расходуется совсем ничтожная часть энергии.

С другой стороны, при использовании нескольких последовательно подключенных LED элементов ставить гасящий резистор из соображений оптимального режима их свечения нецелесообразно. Если выбрать очень маленькое по номиналу сопротивление, оно быстро сгорит из-за большого тока и значительной рассеиваемой мощности. Поэтому функцию токоограничивающего элемента в цепи переменного тока естественнее выполнять конденсатору, на котором энергия не теряется.

Ограничение с помощью конденсатора

Простейшая схема подключения светодиодов через ограничительный конденсатор C характеризуется следующими особенностями:

  • предусматриваются цепочки заряда и разряда, обеспечивающие режимы работы реактивного элемента;
  • потребуется еще один светодиод, необходимый для защиты основного от обратного напряжения;
  • для расчета емкости конденсатора используется полученная опытным путем формула, в которую подставляются конкретные цифры.

Для вычисления значения номинала C нужно умножить силу тока в цепи на выведенный эмпирически путем коэффициент 4,45. После этого следует разделить полученное произведение на разницу между предельным напряжением (310 Вольт) и его падением на светодиоде.

В качестве примера рассмотрим подключение конденсатора к RGB или обычному LED-диоду с падением напряжения на его переходе, равным 3 Вольта и током через него в 9 мА. Согласно рассмотренной формуле его емкость составит 0,13 мкФ. Для введения поправки на ее точное значение следует учитывать, что на величину этого параметра в большей мере влияет токовая составляющая.

Выеденная опытным путем эмпирическая формула действительна лишь для расчета емкостей и параметров светодиодов на 220 В., установленных в сетях частотой 50 Гц. В других частотных диапазонах питающих напряжений (в преобразователях, например), коэффициент 4,45 нуждается в перерасчете.

Нюансы подключения к сети 220 Вольт

При использовании различных схем подключения светодиода к сети 220 В возможны некоторые нюансы, учет которых поможет избежать элементарных ошибок в коммутации электрических цепей. Они в основном связаны с величиной тока, протекающего через цепочку при подаче на нее питания. Для их понимания потребуется рассмотреть простейший прибор типа подсветки для декорирования, состоящий из целого набора светодиодных элементов или обычный светильник на их основе.

Значительное внимание обращается на особенности процессов, протекающих в выключателе в момент подачи питания. Для обеспечения «мягкого» режима включения к его контактам потребуется подпаять в параллель гасящий резистор и светодиод-индикатор, обозначающий включенное состояние.

Значение сопротивления подбирается по методикам, описанным ранее.

Только после выключателя с резистором в схеме располагается сама лента с чипами светодиодных элементов. В ней не предусмотрены защитные диоды, так что величина гасящего резистора подбирается из расчета протекающего по цепи тока, он не должен превышать значения порядка 1 мА.

Светодиодный индикатор-лампочка в этой схеме выполняет функцию нагрузки, еще больше ограничивающей ток. Из-за небольшой величины он будет светиться очень тускло, но этого вполне хватает для ночного режима. При действии обратной полуволны напряжение частично гасится на резисторе, что защищает диод от нежелательного пробоя.

Схема лед драйвера на 220 вольт

Более надежный способ, позволяющий запитать светодиоды от сети, – применение специального преобразователя или драйвера, понижающего напряжение до безопасного уровня. Основное назначение драйвера под светодиод 220 вольт – ограничить ток через него в рамках допустимого значения (согласно паспорту). В его состав входят формирователь напряжения, выпрямительный мостик и микросхема токового стабилизатора.

Вариант драйвера без стабилизатора тока

При желании собрать устройство питания светодиодов от 220 В своими руками потребуется знать следующее:

  • при использовании выходного стабилизатора амплитуда пульсаций существенно снижается;
  • в этом случае на самой микросхеме теряется часть мощности, что сказывается на яркости свечения излучающих приборов;
  • при использовании вместо фирменного стабилизатора фильтрующего электролита большой емкости пульсации не полностью сглаживаются, но остаются в допустимых пределах.

При самостоятельном изготовлении драйвера схему можно упростить, поставив на место выходной микросхемы электролит.

Безопасность при подключении

При работе со схемой включения диодов в сеть 220 Вольт основную опасность представляет соединенный последовательно с ними ограничивающий конденсатор. Под воздействием сетевого напряжения он заряжается до опасного для человека потенциала. Чтобы избежать неприятностей в этой ситуации рекомендуется:

  • предусмотреть в схеме специальную разрядную резисторную цепочку, управляемую отдельной кнопкой;
  • если сделать это невозможно, перед началом настойки после отключения от сети следует разряжать конденсатор с помощью жала отвертки;
  • не устанавливать в цепь питания диодов полярные конденсаторы, обратный ток которых достигает значений, способных «выжечь» схему.

Подключить светодиодные элементы на 220 Вольт удается лишь с помощью специальных элементов, вводимых в схему дополнительно. В этом случае можно обойтись без понижающего трансформатора и блока питания, традиционно используемых для подключения низковольтных осветителей. Основная задача добавочных элементов в схеме подключения светодиода в 220В – ограничить и выпрямить ток через него, а также защитить полупроводниковый переход от обратной полуволны.

Как подключить светодиод к 220 В

У многих начинающих радиолюбителей возникает мысль, как подключить светодиод к 220 В без применения трансформатора. Ведь габариты даже самого маломощного трансформатора сравнительно велики. Это в первую очередь вызвано высоким сетевым напряжением, в результате чего первичная обмотка трансформатора имеет большое число витков.

Основной проблемой подключения светодиода к 220 вольтам на прямую, без трансформатора является ограничение ток, протекающего через него вследствие проложенного напряжения. Оценим его величину для понимания сети происходящего.

Светодиод – это светоизлучающий полупроводниковый прибор, как и «обычный» диод пропускает ток лишь в одном направлении. Поскольку переменное напряжение изменяет свое направление дважды за период, то в один полупериод ток протекает, а во второй – нет. Поэтому, чтобы определить средний ток, протекающий через светодиод, следует действующее напряжения 220 В разделить на два. Получим 110 В. Эту величину возьмем за основу при дальнейших расчетах.

Сопротивление любого полупроводника нелинейное, т.е. нелинейно зависит от величины приложенного напряжения. Не вникая в подробности, с приемлемой точностью примем 1,7 Ом. Тогда ток, протекающий через полупроводниковый кристалл равен 110/1,7 = 65 А! Естественно, такой огромный ток сожжёт полупроводниковый прибор. Поэтому обязательно нужно последовательно со светодиодом включать какое-либо сопротивление.

Если в цепи постоянного напряжения в качестве сопротивления можно использовать только резистор, то на переменном напряжении есть возможность применять еще и конденсатор или катушку индуктивности. Их еще называют реактивными элементами. В один полупериод времени они накапливают энергию (в виде электрического или магнитного поля), а в следующий полупериод возвращают ее в направлении источника питания. При этом электрическая энергия практически не потребляется.

Применение катушки индуктивности не рассматривается, по ряду причин, связанных с ее нагревом.

Как подключить светодиод к 220 В с помощью резистора

Для большей наглядности изобразим расчетную схему.

Такая схема очень распространена в цепях индикации работы электротехнических устройств, например, подсветки выключателя или кнопки электрического чайника. Главным достоинством данной схемы является ее простота, а отсюда и надежность.

С целью сравнения полученных результатов возьмем два светодиода. Один индикаторного типа, а второй более мощный.

Определим сопротивление R1, необходимое для первого светодиода:

Сетевое напряжение делим на два по уже указанной выше причине.

Мощность рассеивания резистор равна:

Принимаем 2 ватта, поскольку такой номинал является ближайшим в сторону увеличения из стандартного ряда мощностей.

Теперь определим сопротивление резистора, соединенного последовательно со вторым светодиодом:

Мощность рассеивания равна:

Резисторы с такой мощностью рассеивания имеют значительные размеры и немалую стоимость, поэтому не рационально их применение в цепи с мощными светодиодами. Более эффективным будет замена его конденсатором.

Для защиты полупроводникового прибора встречно-параллельно подсоединяют диод.

Его назначение состоит в следующем. В проводящий полупериод на светодиоде падает напряжения порядка 2…3 В. В не проводящий полупериод он заперт и к его выводам прикладывается обратное полное действующее напряжение 220 В, амплитуда которого достигает 310 В. Поэтому существует вероятность пробоя полупроводникового прибора. Однако если создать путь для протекания тока в этот непроводящий полупериод времени, то снизится амплитуда опасного обратного напряжения. Именно это достигается за счет применения шунтирующего диода.

Кстати, вместо него можно применять еще один светодиод, желательно со схожими параметрами.

Визуально нам будет казаться, что оба они светят все время, но на самом деле они мерцают с частотой 50 Гц. Причем, когда первый светит, второй гаснет и наоборот, т.е. работают в противофазе.

В этом случае необходимо учесть, что через резистор ток протекает в оба полупериода времени, поэтому его сопротивление нужно снизить вдвое. Далее в последующих расчетах мы будем пользоваться схемой без шунтирующего диода.

Как подключить светодиод к 220 В с помощью конденсатора

Выше уже было сказано, что конденсатор обладает реактивным сопротивлением переменному току, т.е. он не потребляет активную мощность, как резистор, поэтому практически не нагревается. Постоянный ток он не пропускает и является для него огромным сопротивлением, которое можно приравнять к разрыву цепи.

Если же на конденсатор подать переменное напряжение, то через него будет, упрощенно говоря протекать ток. Причем сопротивление этого реактивного элемента обратно пропорционально зависит от частоты f, т.е. с ростом f оно снижается. Таким же образом сопротивление зависит и от емкости:

Из приведенной формулы нам необходимо найти значение емкости:

Подставляем данные значения и находим емкости:

Внимание! Все конденсаторы, подключаемые в сеть 220 В, должны быть рассчитаны на напряжение не менее 400 В.

Главным и очень существенным недостатком такой схемы является протекание значительного тока в момент подключения к сети. При этом величина его может превышать в несколько раз номинальный ток светодиода, в результате последний может выйти из строя.

Следует учитывать, что чем больше емкость конденсатора, тем выше значение тока в момент включения. Поэтому для защиты полупроводникового прибора рекомендуется последовательно с конденсатором включать резистор.

Исходя из тех соображений, что резистор с мощностью рассеивания P = 5 Вт имеет небольшие габариты, то рассчитаем величину его сопротивления при данных ограничениях для схемы с более мощным светодиодом:

Из номинального ряда сопротивлений выбираем ближайшее значение 39 Ом.

Конечно, коэффициент полезного действия данной схемы очень снизится, поскольку для питания светодиода мощностью 1 Вт необходимо затратить 6 Вт с источника питания. 5 ватт будут попросту греть резистор.

Сообщества › Сделай Сам › Блог › Светодиоды в сети 220 вольт или LED ночник своими руками.

Так как многих интересует, как включить светодиоды в сеть 220 в, решил написать об этом. Схем в интернете очень много, но некоторые сложноваты для такого несерьезного изделия, некоторые не так надежны в работе. В результате нескольких экспериментов я выбрал эту.
А заодно решил на ее базе сделать ночник дабы не таранить лбом мебель в темноте ночью и не будить домочадцев, включая свет.
Конечно очень много таких девайсов сейчас в продаже, и стоят они копейки. Но…
Сколько я не смотрел мимоходом такие изделия в магазинах, не стал ничего покупать по следующим причинам.
1. Они в упаковке, и нельзя посмотреть, как светят. Тускло ли, ярко ли, да и каким цветом непонятно.
2. Гламурный вид многих из них меня реально бесит.
Так что, не просто найти нужный ночник, по крайней мере для меня оказалось.
Купил когда-то давно ночник из «Икеа» (фото 1). Который так и валялся без дела, потому как он светит так, что в темноте видно только его дурацкую улыбочку и ничего больше. Разобрав его, увидел под почти непрозрачным желтым пластиковым плафоном… Две неоновые лампочки! О как! На моих часах лимб и стрелки ярче светятся в темноте.

Смотрите также

Метки: светодиоды в сети 220 вольт.

Комментарии 50

а я проще сделал: взял старый манометр, диаметром 10 см. выпотрошил его, на дно положил старый сд-диск подрезанный, светодиодную ленту 12 В наклеил на борт, затонировал стекло зеркальной пленкой, все собрал, запитал от старого блока питания 9В и вот, что получилось

прочитал «в розетке холла», много думал… Датчик знаю, розетку нет 🙂 Потом осознал

Схема простейшая и работать будет долго (Главное не перебрать с мощностью на диодах — у меня со временем дохли такие даже на токе 10 мА) Только диод vd1 неважно на какое напряжение: на нем не более 6В в этой схеме. А в целом запись поучительная для начинаний!

Почитал. Долго думал. В итоге понял что иностранные матершинные слова все равно не смогу перевести ??? А ночник прикольный.

ночник светодиодный стоит от 50-80р? зачем его делать, разве что руки подразмять

Удивляюсь, как пишут комментарии даже не прочитав материал. Там все сказано. Зачем и почему. И что копейки это стоит в магазинах, кстати тоже.

Ну вот, пришли поручики Ржевские и все опошлили.
Да все нормально там, не выгорят. Я оставил запас им по напряжению (току) процентов 40. Можно конечно было напихать туда импульсный блок питания, и стабилизатор, и конденсаторы, и плафон взять с кастрюлю размером. Только вы советуете, а он горит каждую ночь. И включался-выключался за его короткую жизнь пока уже раз 150, не умер еще от страстей ваших.
А про мерцание я уже трижды сказал здесь, — его практически незаметно. И «любоваться на мерцание в темноте» мне, как-то в отличие от товарисча, который меня поучал снисходительно и на «ты» выше, как-то в голову не приходило.

Нужно параллельно диоду подключить электролитический конденсатор и не будет мерцания, схема без стабилизатора, будут часто гореть светодиоды.

Надо было встречно-параллельно включать светодиоды.

Ты бы хоть туда стабилитрон поставил что ли, чтоб Сд твои не выгорели от броска в момент включения и электролит в параллель . . и охота любоваться на мерцание сд в темноте?! Схема овно.

Господин, уважаемый, неоднократно замечал, что «критикуют» с употреблением мощного термина в оценке чужого, а именно «говно», обычно те, кто сам ничего не делает. Убедился в этом в очередной раз, зайдя на вашу пустую страничку, где вы в одной записи живописуете, как и сколько на своей газели кирпичей возите. Вот и возите кирпичи.
И извольте на «вы» с незнакомыми людьми. Как-то не довелось мне бухать с вами и на вашей газели под бухло по девочкам кататься. Физкультпривет, мастер.

Хочешь чтоб не критиковали и не советовали? -так это не в этом случае. форум или сообщество это публичное место, так что, придется тебе потерпеть чутка, да и выставляй свои детские поделия напоказ, мне-то что, хотя и взрослый мущщина ). Просто начинающие люди на это клюют и заведомо будут делать неправильные решения, а ты прежде чем выпучиваться, сперва почитал бы соответствующую техлитературу что ли, или просто спросить-как вы думаете, как надежнее и правильнее сделать то-то и то-то ?! но видать самолюбие при этом у тя сильно зашкаливает, чтобы я да в свои года что-то спросил еще . . . Никогда.А учиться никогда не поздно. Вот ты и застыл на уровне начальных классов.Удачи кулиппин, да и меньше шарься по чужим профилям, твоему делу это точно не поможет.

Ты хамло. давайдосвидания.

обзывать человека тебе права никто не давал вообще-то.Забанить тебя можно конкретно за это, на улице б давно схватить успел бы

Иди лесом. И метлу привяжи. Чешешь с незнакомыми людьми по-хамски. Жаль, схватить ты еще не успел. Но у таких все впереди, я их видел не раз. Конец связи.

эх Адрюша, болеешь ты самолюбием сильно . . .И справедливые замечания как дополнения не хочешь воспринимать, а обид выше неба. Не сердись и не обижайся.Все по делу. Удач тебе на паяльном фронте, больше радостей и меньше разочарований.)

Я тебе не Андрюша. Ты, бес, попутал меня с кем-то. Обиженных ты еще не видел походу. Понимай речь людскую. И кончай здесь базар свой попугайский. Издалека такие как ты хамством свою самооценку поднимают, это понятно. Только часто они берега теряют и потом все плохо случается.
А «паяльный фронт» это баловство для меня, там удач мне не надо.
Каждый сам за себя знает, что он внутри из себя представляет по пути тому, что за спиной оставил.
Я тут грешным делом подумал сбросить базар твой глумливый моему старинному приятелю столичному, да опасаюсь спросит с тебя не по-детски. Потому тормознул. Надеюсь понималка твоя сработает правильно. Так что не буди лихо… И не путай обмен мнениями в этом публичном месте, как ты выразился, с хамством бычьим.
Жизнь тебя еще поучит за язык твой отвязный, походу пока еще недосуг ей было. Это последнее, что скажу тебе, Юрок.

да конечно бэмэвэ хе5 это конечно не Соболь, тягаться мне с тобой разве что по уму, но в этом ты не сильно преуспел, а пугать меня не надо, за это можно и в полиции оказаться и веди себя прилично и держи как подобает порядочному человеку а не блатной свой жаргон выпячивать, иначе сюда забудешь дорогу навсегда. Умей выслушивать и противную сторону, даже если она тебе противна ).Не пиши-не отвечу.

Мне твои ответы, — как в бане гудок. Умным себя считаешь? Ну, ну. Смешной ты, заяц тряпошный.
Умный человек никогда не начнет разговор на «ты» и в хамском тоне, тем более с незнакомым человеком и тем более на людях. Говорил уже, что видел достаточно таких. Только им чуть на кадык наступишь, — визжат свиньей и полицию зовут в спасители. А дел то всего — веди себя по людски с людьми, и будет тебе мир и здоровье на долгие годы.
Тягаться тебе вообще ни с кем не стоит. Ты нечто и более ничего. Машины приплел здесь. Это не при чем. Я знаю много достойных людей на скромных бюджетных тачках. Это для тебя хороший автомобиль — блестящая мечта на горизонте, а для меня и многих людей здесь это нечто вроде удобной обуви, которую носишь не думая о ней.
Не тебе учить, как вести себя порядочному человеку, ибо где он, этот порядочный человек, а где ты (эпитеты применять не стану, а то про полицию опять заголосишь)?
Такие «умные», как ты всегда впадают в ступор от взрыва остатков мозга при одном вопросе, который часто задают в Одессе таким умникам евреи, — раз ты такой умный, что ж ты такой бедный?
И последнее. Я довольно много сказал тебе здесь, чем уже против себя пошел. Обычно с такими я не говорю. Но ты (не я, а ты) на людях этот гнилой базар начал. Другой бы понял давно, тот кто умный, что тебе донести в приличной форме пытаются элементарные вещи, но ты не догоняешь, масла в голове недостаточно.
Про таких я говорю, — их горе в том, что родились такими.
Будь здоров, вози свои кирпичи на своем соболе и почаще включай мозги, хотя для тебя это и трудно.

Подключение светодиода к сети 220в , схема и расчет

Сегодня к светодиодам значительно возрос интерес, ведь за ними будущее в освещении. Возникает вопрос как происходит подключение светодиода к сети 220 В, на который мы подробно ответим в этой статье. Также рассмотрим напряжение питания, распиновку, цоколевку, схемы подключения и различные расчеты.

Светодиодом называют полупроводниковый прибор, где электрический ток переходит в свет. Диод пропускает ток только в одном направлении. Светодиоды подключаются к 220В благодаря драйверу, который подходит по всем характеристикам.

Подключение по схеме может быть параллельным или последовательным. Светодиод характеризуется прочным корпусом, долгой и надежной работой.

Как устроен светодиод

Обычный индикаторный светодиод изготавливают в эпоксидном корпусе с диаметром 5 мм и двумя контактными выводами для подключения к цепям электрического тока: анодом и катодом. Визуально они отличаются по длине. У нового прибора без обрезанных контактов катод короче.

    Запомнить это положение помогает простое правило: с буквы «К» начинаются оба слова:

  1. катод;
  2. короче.

Когда же ножки светодиода обрезаны, то анод можно определить подачей на контакты напряжения 1,5 вольта от простой пальчиковой батарейки: свет появляется при совпадении полярностей.

Как устроен светодиод? Светоизлучающий активный монокристалл полупроводника имеет вид прямоугольного параллелепипеда. Он размещён около светоотражающего рефлектора параболической формы из алюминиевого сплава и смонтирован на подложке с нетокопроводящими свойствами.

На окончании светового прозрачного корпуса из полимерных материалов расположена линза, фокусирующая световые лучи. Она совместно с рефлектором образует оптическую систему, формирующую угол потока излучения. Его характеризуют диаграммой направленности светодиода.

Она характеризует отклонение света от геометрической оси общей конструкции в стороны, что приводит к увеличению рассеивания. Такое явление возникает из-за появления при производстве небольших нарушений технологии, а также старения оптических материалов во время эксплуатации и некоторых других факторов.

Внизу корпуса может быть расположен алюминиевый или латунный поясок, служащий радиатором для отвода тепла, выделяемого при прохождении электрического тока.

Этот принцип конструкции широко распространен. На его основе создают и другие полупроводниковые источники света, использующие иные формы структурных элементов.

Свечение в полупроводниковом кристалле возникает при рекомбинации электронов и дырок в области p-n-перехода. Область p-n-перехода, образуется контактом двух полупроводников с разными типами проводимости. Для этого приконтактные слои полупроводникового кристалла легируют разными примесями: по одну сторону акцепторными, по другую — донорскими.

Светодиоды на основе фосфида и арсенида галлия, излучающие в желто-зеленой, желтой и красной областях спектра были разработаны еще в 60-х — 70-х годах прошлого столетия. Их применяли в световых индикаторах, табло, приборных панелях автомобилей и самолетов, рекламных экранах, различных системах визуализации информации.

По светоотдаче светодиоды обогнали обычные лампы накаливания. По долговечности, надежности, безопасности они тоже их превзошли. Долго не существовало светодиодов синего, сине-зеленого и белого цвета.

Цвет светодиода зависит от ширины запрещенной зоны, в которой рекомбинируют электроны и дырки, то есть от материала полупроводника и легирующих примесей. Чем «синее» светодиод, тем выше энергия квантов, а значит, тем больше должна быть ширина запрещенной зоны.

Голубые светодиоды удалось изготовить на основе полупроводников с большой шириной запрещенной зоны — карбида кремния, соединений элементов II и IV группы или нитридов элементов III группы. Однако, у светодиодов на основе SiC оказался слишком мал КПД и низок квантовый выход излучения (то есть число излученных квантов на одну рекомбинировавшую пару).

У светодиодов на основе твердых растворов селенида цинка ZnSe квантовый выход был выше, но они перегревались из-за большого сопротивления и оказались недолговечны. Первый голубой светодиод удалось изготовить на основе пленок нитрида галлия на сапфировой подложке.

Квантовый выход — это число излученных квантов света на одну рекомбинировавшую электронно-дырочную пару. Различают внутренний и внешний квантовый выход. Внутренний — в самом p-n-переходе, внешний — для прибора в целом (ведь свет может теряться «по дороге» — поглощаться, рассеиваться).

Внутренний квантовый выход для хороших кристаллов с хорошим тепло-отводом достигает почти 100%, рекорд внешнего квантового выхода для красных светодиодов составляет 55%, а ддя синих — 35%. Внешний квантовый выход — одна из основных характеристик эффективности светодиода.

Белый света от светодиодов можно получить несколькими способами. Первый — смешать цвета по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые светодиоды, излучение которых смешивается при помощи оптической системы, например, линзы. В результате получается белый свет.

Второй способ заключается в том, что на поверхность светодиода, излучающего в ультрафиолетовом диапазоне (есть и такие), наносится три люминофора, излучающих, соответственно, голубой, зеленый и красный свет. По принципу люминесцентной лампы.

Третий способ — это когда желто-зеленый или зелено-красный люминофор наносятся на голубой светодиод. При этом два или три излучения смешиваются, образуя белый или близкий к белому свет.

Напряжение питания светодиодов

Несмотря на то что электрический параметр №1 для светодиода – это номинальный ток, часто для расчётов необходимо знать напряжение на его выводах. Под понятием «напряжение светодиода» понимают разницу потенциалов на p-n-переходе в открытом состоянии.

Оно является справочным параметром и вместе с другими характеристиками указывается в паспорте к полупроводниковому прибору. 3, 9 или 12 вольт… Часто в руки попадают экземпляры, о которых ничего не известно. Так как узнать падение напряжения на светодиоде?

  • Теоретический метод

Прекрасной подсказкой в этом случае является цвет свечения, внешняя форма и размеры полупроводникового прибора. Если корпус светодиода выполнен из прозрачного компаунда, то цвет его остаётся загадкой, разгадать которую поможет мультиметр.

Для этого переключатель цифрового тестера переводят в положение «проверка на обрыв» и щупами поочерёдно касаются выводов светодиода. У исправного элемента в прямом смещении будет наблюдаться небольшое свечение кристалла. Таким образом, можно сделать вывод не только о цвете свечения, но и о работоспособности полупроводникового прибора.

Светоизлучающие диоды разных цветов изготавливают из различных полупроводниковых материалов. Именно химический состав полупроводника во многом определяет напряжение питания светодиодов, точнее, падение напряжение на p-n-переходе.

В связи с тем, что в производстве кристаллов используют десятки химических соединений, точного напряжения для всех светодиодов одного цвета не существует. Однако есть определённый диапазон значений, которых зачастую достаточно для проведения предварительных расчетов элементов электронной цепи.

С одной стороны, размер и внешний вид корпуса не влияют на прямое напряжение светодиода. Но, с другой стороны. через линзу можно увидеть количество излучающих кристаллов, которые могут быть соединены последовательно. Слой люминофора в SMD светодиодах может скрывать целую цепочку из кристаллов.

Ярким примером является миниатюрные многокристальные светодиоды от компании Cree, падение напряжения на которых зачастую значительно превышает 3 вольта. В последние годы появились белые SMD светодиоды, в корпусе которых размещено 3 последовательно соединённых кристалла. Их часто можно встретить в китайских светодиодных лампах на 220 вольт.

Естественно убедиться в исправности LED-кристаллов в такой лампе при помощи мультиметра не удастся. Стандартная батарейка тестера выдаёт 9 В, а минимальное напряжение срабатывания трёхкристального белого светоизлучающего диода – 9,6 В. Также встречаются двухкристальная модификация с порогом срабатывания от 6 вольт.

  • Практический метод

Самые точные данные о прямом падении напряжения на светодиоде можно получить путём проведения практических измерений. Для этого понадобится регулируемый блок питания (БП) постоянного тока с напряжение от 0 до 12 вольт, вольтметр или мультиметр и резистор на 510 Ом (можно больше). Лабораторная схема для тестирования показана на рисунке.

Здесь всё просто: резистор ограничивает ток, а вольтметр отслеживает прямое напряжение светодиода. Плавно увеличивая напряжение от источника питания, наблюдают за ростом показаний на вольтметре. В момент достижения порога срабатывания светодиод начнёт излучать свет.

В какой-то момент яркость достигнет номинального значения, а показания вольтметра перестанут резко нарастать. Это означает, что p-n-переход открыт, и дальнейший прирост напряжения с выхода БП будет прикладываться только к резистору. Текущие показания на экране и будут номинальным прямым напряжением светодиода.

Если ещё продолжить наращивать питание схемы, то расти будет только ток через полупроводник, а разность потенциалов на нём изменится не более чем на 0,1-0,2 вольт. Чрезмерное превышение тока приведёт к перегреву кристалла и электрическому пробою p-n-перехода.

Если рабочее напряжение на светодиоде установилось около 1,9 вольт, но при этом свечение отсутствует, то возможно тестируется инфракрасный диод. Чтобы убедиться в этом, нужно направить поток излучения на включенную фотокамеру телефона. На экране должно появиться белое пятно.

В отсутствии регулируемого блока питания можно запитать светодиод «кроной» на 9 В. Также можно задействовать в измерениях сетевой адаптер на 3 или 9 вольт, который выдаёт выпрямленное стабилизированное напряжение, и пересчитать номинал сопротивления резистора.

Распиновка светодиода

Для решения вопроса существует всего 3 способа:

  • Конструктивно

Согласно нормам, принятым во всем мире, на обычном светодиоде (не SMD типа), длинная ножка всегда является «+» или же анодом. Для работы светодиода на него должна подаваться положительная полуволна. А короткая – катодом.

  • С помощью мультиметра

Для проверки необходимо переключатель прибора поставить в режим «Прозвонка» и установить красный щуп мультиметра на анод, а черный – на катод. В результате светодиод должен засветиться. Если этого не произошло, необходимо поменять полярность (черный на анод, а красный на катод).

Если присмотреться к светодиоду, то можно увидеть 2 кончика возле кристалла. Тот, который больше – катод, тот, что меньше – анод.

Цоколевка светодиодов

Под цоколевкой принято понимать внешний вид (исполнение корпуса) светодиода. Каждый производитель выполняет светодиод в своем корпусе, в зависимости от структуры и назначения. Единого стандарта, как в светодиодных лампах не существует, напомню, самые распространенные цоколи ламп: е27, е14.

Какого-либо единого стандарта цоколевки светодиодов не существует. Каждый производитель делает так, как считает нужным. В итоге, на прилавках магазинов мы получаем множество светодиодов, различающихся по форме, внешнему виду, дизайну.

Из всего множества все – таки можно выделить пару небольших групп. Например, самые распространенные простые светодиоды выполняются в прозрачном или цветном корпусе из прочного пластика или стекла, и имеют форму цилиндра, край которого чаще всего закруглен.

Более дорогие светодиоды состоят из нескольких частей: основания и линзы. На основании расположены токопроводящие дорожки, а линза выполнена из качественного материала, которая служит в качестве рассеивателя света.

Основание изготавливают в виде круга или квадрата. Полярность на квадрате обозначают скошенным уголком. Например, светодиоды CREE, выглядят следующим образом:

Нестандартная цоколевка может встретиться при ремонте электронных блоков и вызвать определенные затруднения в определении полярности. По цоколевке светодиода определяется его полярность, знание которой требуется для ремонта или правильного монтажа светодиода в схему.

Не всегда есть возможность определить полярность привычными способами, из-за нестандартной цоколевки светодиода: особенное строение корпуса, утолщение одного из светодиодов и другие причины. Поэтому, в таких случаях, как не крути, придется прибегнуть к электрическому замеру.

Обозначение светодиодов на схеме

Светодиод на схеме обозначается в виде обычного диода с двумя стрелками, направленными в сторону, обозначающее излучение света. Сам диод может изображаться, как в круге, так и без него.

Со стороны носика треугольника находится катод, а со стороны задней части треугольника – анод. Иногда на схеме можно увидеть обозначения анода и катода в виде букв А и К или + и -, что соответственно обозначает, анод и катод или плюс и минус.

Подписывается полупроводниковый элемент на отечественных схемах буквами HL (HL1, HL2 и т.д.) – это по ГОСТ. В зарубежных стандартах обозначение светодиода на схеме аналогично российскому. Подписывается он уже другим словом — LED (LED1, LED2, LED3 и т.д.), что в переводе с английского расшифровывается как light — emitting diode – светоизлучающий диод.

Не стоит путать обозначение светодиода на схеме с фотодиодом. С первого взгляда может показаться, что они одинаковые, однако, при детальном рассмотрении видна существенная разница: стрелки фоторезистора направлены на диод (треугольник с палочкой у острого конца).

Вторым отличием является буквенное обозначение фоторезистора – VD или VB, что означает фотоэлемент.

В заключении хочется сказать, что маркировка очень важна. Знание ее расшифровки, позволяет определить основные параметры светодиода, не открывая даташит. Запомнить маркировку всех производителей нереально, да и не к чему, достаточно знать расшифровку основных брендов.

Последовательное подключение светодиодов

При последовательном соединении через токоограничивающий резистор в одну цепочку собираются несколько светодиодов, причем катод предыдущего припаивается к аноду последующего:

В схеме, по всем светодиодам будет проходить один ток (20мА), а уровень напряжения будет состоять из сумм падения напряжения на каждом. Это означает, используя данную схему подключения, нельзя включить в цепь любое количество светодиодов, т.к. оно ограничено падением напряжения.

Падение напряжения – это уровень напряжения, которое светоизлучающий диод преобразует в световую энергию (свечение).

Например, в схеме падение напряжения на одном светодиоде составит 3 Вольта. Всего в схеме 3 светодиода. Источник питания 12В. Считаем, 3 Вольта * 3 led = 9 В — падение напряжения.

После несложных расчетов, мы видим, что не сможем включить в схему последовательного подключения более 4 светодиодов (3*4=12В), запитывая их от обычного автомобильного аккумулятора (или другого источника с напряжением 12В).

Если захотим последовательно подключить большее количество LEd, то понадобится источник питания с большим номиналом.

Данная схема довольно часто встречалась в елочных гирляндах, однако из-за одного существенного недостатка в современных светодиодных гирляндах применяют смешанное подключение. Что за недостаток, разберем ниже.

    Недостатки последовательного подключения:

  1. При выходе из строя хотя бы одного элемента, не рабочей становится вся схема.
  2. Для питания большого количества led нужен источник с высоким напряжением.

Параллельное соединение светодиодов

В данной ситуации все происходит наоборот. На каждом светодиоде уровень напряжения одинаковый, а сила тока состоит из суммы токов, проходящих через них.

Следуя из вышесказанного делаем вывод, если у нас есть источник в 12В и 10 светодиодов, блок питания должен выдерживать нагрузку в 0,2А (10*0,002). Исходя из вышеупомянутых расчетов — для параллельного подключения потребуется токоограничивающий резистор с номиналом 2,4 Ом (12*0,2).

Это глубокое заблуждение!!! Почему? Ответ Вы найдете ниже.

Характеристики каждого светодиода даже одной серии и партии всегда разные. Если другими словами: чтобы засветился один, необходимо пропустить через него ток с номиналом 20 мА, а для другого этот номинал может составлять уже 25 мА.

Таким образом, если в схеме установить только одно сопротивление, номинал которого был рассчитан ранее, через светодиоды будет проходить разный ток, что вызовет перегрев и выход из строя светодиодов, рассчитанных на номинал в 18мА, а более мощные будут светить всего на 70% от номинала.

Исходя из вышесказанного, стоит понимать, что при параллельном подключении, необходимо устанавливать отдельное сопротивление для каждого.

    Недостатки параллельного подключения:

  • Большое количество элементов.
  • При выходе одного диода из строя увеличивается нагрузка на остальные.

Смешанное подключение

Подобный способ подключения является самым оптимальным. По такому принципу собраны все светодиодные ленты. Он подразумевает комбинацию параллельного и последовательного подключения. Как он выполняется можно увидеть на фото:

Схема подразумевает включение параллельно не отдельных светодиодов, а последовательных цепочек из них. В результате этого даже при выходе из строя одной или нескольких цепочек, светодиодная гирлянда или лента будут по-прежнему одинаково светить.

Мы рассмотрели основные способы подключения простых светодиодов. Теперь разберем методы соединения мощных светодиодов, и с какими проблемами можно столкнуться при неправильном подключении.

Как подключить светодиод к сети 220 вольт

Светодиод – это разновидность полупроводниковых диодов с напряжением и током питания намного меньшим, чем в бытовой электросети. При прямом подключении в сеть 220 вольт, он мгновенно выйдет из строя.

Поэтому светоизлучающий диод обязательно подключается только через токоограничивающий элемент. Наиболее дешевыми и простыми в сборке является схемы с понижающим элементом в виде резистора или конденсатора.

Первое, что нужно знать при подключении к сети 220В, — для номинального свечения через светодиод должен проходить ток в 20мА, а падение напряжения на нем не должно превышать 2,2-3В. Исходя из этого, необходимо рассчитать номинал токоограничивающего резистора по следующей формуле:

    где:

  • 0,75 – коэффициент надежности LED;
  • U пит – это напряжения источника питания;
  • U пад – напряжение, которое падает на светоизлучающем диоде и создает световой поток;
  • I – номинальный ток, проходящий через него;
  • R – номинал сопротивления для регулирования проходящего тока.

После соответствующих вычислений, номинал сопротивления должен соответствовать 30 кОм.

Однако не стоит забывать, что на сопротивлении будет выделятся большое количество тепла за счет падения напряжения. По этой причине дополнительно необходимо рассчитать мощность этого резистора по формуле:

Для нашего случая U – это будет разность напряжения питающей сети и напряжения падения на светодиоде. После соответствующих вычислений, для подключения одного led мощность сопротивления должна равняться 2Вт.

Важный момент, на который нужно обратить внимание при подключении светодиода в сеть переменного тока – это ограничение обратного напряжения. С этой задачей легко справляется любой кремниевый диод, рассчитанный на ток не менее того, что течет в цепи. Подключается диод последовательно после резистора или обратной полярностью параллельно светодиоду.

Существует мнение, что можно обойтись без ограничения обратного напряжения, так как электрический пробой не вызывает повреждения светоизлучающего диода. Однако обратный ток может вызвать перегрев p-n перехода, в результате чего произойдет тепловой пробой и разрушение кристалла светодиода.

Вместо кремниевого диода можно использовать второй светоизлучающий диод с аналогичным прямым током, который подключается обратной полярностью параллельно первому светодиоду. Отрицательной стороной схем с токоограничивающим резистором является необходимость в рассеивании большой мощности.

Эта проблема становится особо актуальной, в случае подключения нагрузки с большим потребляемым током. Решается данная проблема путем замены резистора на неполярный конденсатор, который в подобных схемах называют балластным или гасящим.

Включенный в сеть переменного тока неполярный конденсатор, ведет себя как сопротивление, но не рассеивает потребляемую мощность в виде тепла.

В данных схемах, при выключении питания, конденсатор остается не разряженным, что создает угрозу поражения электрическим током. Данная проблема легко решается путем подключения к конденсатору шунтирующего резистора мощностью 0,5 ватт с сопротивлением не менее 240 кОм.

Расчет резистора для светодиода

Во всех выше представленных схемах с токоограничивающим резистором расчет сопротивления производится согласно закону Ома:

R = U/I

    где:

  • U – это напряжение питания;
  • I – рабочий ток светодиода.

Рассеиваемая резистором мощность равна P = U * I.

Если планируется использовать схему в корпусе с низкой конвекцией, рекомендуется увеличить максимальное значение рассеиваемой резистором мощности на 30%.

Расчет гасящего конденсатора для светодиода

Расчёт ёмкости гасящего конденсатора (в мкФ) производится по следующей формуле:

C = 3200*I/U

    где:

  • I – это ток нагрузки;
  • U – напряжение питания.

Данная формула является упрощенной, но ее точности достаточно для последовательного подключения 1-5 слаботочных светодиодов.

Для защиты схемы от перепадов напряжения и импульсных помех, гасящий конденсатор нужно выбирать с рабочим напряжением не менее 400 В.

Конденсатор лучше использовать керамический типа К73–17 с рабочим напряжением более 400 В или его импортный аналог. Нельзя использовать электролитические (полярные) конденсаторы.

Схема лед драйвера на 220 вольт

Схема лед драйвера на 220 вольт представляет собой не что иное, как импульсный блок питания.

В качестве самодельного светодиодного драйвера от сети 220В рассмотрим простейший импульсный блок питания без гальванической развязки. Основное преимущество таких схем – простота и надёжность.

Но будьте осторожны при сборке, поскольку у такой схемы нет ограничения по отдаваемому току. Светодиоды будут отбирать свои положенные полтора ампера, но, если вы коснётесь оголённых проводов рукой, ток достигнет десятка ампер, а такой удар тока очень ощутимый.

    Схема простейшего драйвера для светодиодов на 220В состоит их трёх основных каскадов:

  1. делитель напряжения на ёмкостном сопротивлении;
  2. диодный мост;
  3. каскад стабилизации напряжения.

Первый каскад – ёмкостное сопротивление на конденсаторе С1 с резистором. Резистор необходим для саморазрядки конденсатора и на работу самой схемы не влияет. Его номинал не особо критичен и может быть от 100кОм до 1Мом с мощностью 0,5-1 Вт. Конденсатор обязательно не электролитический на 400-500В (эффективное амплитудное напряжение сети).

При прохождении полуволны напряжения через конденсатор, он пропускает ток, пока не произойдет заряд обкладок. Чем меньше его ёмкость, тем быстрее происходит полная зарядка. При ёмкости 0,3-0,4мкФ время зарядки составляет 1/10 периода полуволны сетевого напряжения.

Говоря простым языком, через конденсатор пройдет лишь десятая часть поступающего напряжения.

Второй каскад – диодный мост. Он преобразует переменное напряжение в постоянное. После отсечения большей части полуволны напряжения конденсатором, на выходе диодного моста получаем около 20-24В постоянного тока.

Третий каскад – сглаживающий стабилизирующий фильтр. Конденсатор с диодным мостом выполняют функцию делителя напряжения. При изменении вольтажа в сети, на выходе диодного моста амплитуда так же будет меняться.

Чтобы сгладить пульсацию напряжения параллельно цепи подключаем электролитический конденсатор. Его ёмкость зависит от мощности нашей нагрузки. В схеме драйвера питающее напряжение для светодиодов не должно превышать 12В. В качестве стабилизатора можно использовать распространённый элемент L7812.

Собранная схема светодиодной лампы на 220 вольт начинает работать сразу, но перед включением в сеть тщательно изолируйте все оголённые провода и места пайки элементов схемы.

Вариант драйвера без стабилизатора тока

В сети существует огромное количество схем драйверов для светодиодов от сети 220В, которые не имеют стабилизаторов тока.

Проблема любого безтрансформаторного драйвера – пульсация выходного напряжения, следовательно, и яркости светодиодов. Конденсатор, установленный после диодного моста, частично справляется с этой проблемой, но решает её не полностью.

На диодах будет присутствовать пульсация с амплитудой 2-3В. Когда мы устанавливаем в схему стабилизатор на 12В, даже с учётом пульсации амплитуда входящего напряжения будет выше диапазона отсечения.

Диаграмма напряжения в схеме без стабилизатора

Диаграмма в схеме со стабилизатором

Поэтому драйвер для диодных ламп, даже собранный своими руками, по уровню пульсации не будет уступать аналогичным узлам дорогих ламп фабричного производства.

Как видите, собрать драйвер своими руками не представляет особой сложности. Изменяя параметры элементов схемы, мы можем в широких пределах варьировать значения выходного сигнала.

Если у вас возникнет желание на основе такой схемы собрать схему светодиодного прожектора на 220 вольт, лучше переделать выходной каскад под напряжение 24В с соответствующим стабилизатором, поскольку выходной ток у L7812 1,2А, это ограничивает мощность нагрузки в 10Вт.

Для более мощных источников освещения требуется либо увеличить количество выходных каскадов, либо использовать более мощный стабилизатор с выходным током до 5А и устанавливать его на радиатор.

Это нужно знать

Главное – это помнить о технике безопасности. Представленные схемы питаются от 220 В сети переменного тока, поэтому требуют во время сборки особого внимания. Подключение светодиода в сеть должно осуществляться в четком соответствии с принципиальной схемой.

Отклонение от схемы или небрежность может привести к короткому замыканию или выходу из строя отдельных деталей. При первом включении, сборки рекомендуется дать поработать некоторое время, чтобы убедиться в ее стабильности и отсутствии сильного нагрева элементов.

Для повышения надёжности устройства рекомендуется использовать заранее проверенные детали с запасом по предельно допустимым значениям напряжения и мощности. Собирать бестрансформаторные источники питания следует внимательно и помнить, что они не имеют гальванической развязки с сетью.

Готовая схема должна быть надёжно изолирована от соседних металлических деталей и защищена от случайного прикосновения. Демонтировать её можно только с отключенным напряжением питания.

Автор:
Сергей Владимирович, инженер-электрик.
Подробнее об авторе.

Несколько вариантов схем как подключить светодиод к 220 вольтам (для световой индикации).

Порой возникает необходимость в подключении обычного, маломощного светодиода к переменному, сетевому напряжению 220 вольт в роли светового индикатора. Казалось бы нет ничего проще, чем взять и поставить последовательно светодиоду обычный резистор, который бы ограничивал силу тока в данной цепи. Но не все так просто. В этой статье давайте с вами рассмотрим наиболее распространенные варианты такого подключения, после чего можно будет выбрать наиболее лучшую схему с учетом имеющихся достоинств и недостатков.

Вариант №1 » последовательное включение светодиода и резистора.

Итак, первым вариантом все же будет схема, где последовательно к светодиоду подключается обычный резистор с нужным сопротивлением. Величину сопротивления можно вычислить по закону ома. Допустим у нас светодиод, рассчитанный на напряжение 3 вольта и потребляющий 9 миллиампер. Напряжение питания (220 В) разделится между резистором и светодиодом. Если на светодиоде осядет 3 вольта, то на резисторе осядет около 217 вольт. Ток в последовательных цепях во всех точках одинаковый (в нашем случае он будет равен 9 мА). И чтобы узнать сопротивление резистора мы 217 вольт делим на 9 миллиампер и получаем 24 ком (24000 ом).

Теоретически эта схема подключения светодиода к сети 220 вольт рабочая, но практически она скорее всего сгорит сразу при включении. Почему это так. Дело в том, что большинство обычных светодиодов рассчитаны на напряжение питания (при прямом своем включении, то есть плюс светодиода к плюсу источника питания и минус светодиода к минусу источника питания), где-то в пределах от 2,5 до 4,5 вольта. При прямом включении на светодиоде будет его рабочее напряжение (пусть 3 вольта), а излишек (217 вольт) осядет на резисторе. Обратное напряжение у светодиодов не такое уж и высокое (где-то около 30 вольт). И когда обратная полуволна переменного напряжения подается на светодиод, то светодиод просто выйдет из строя из-за слишком большого обратного напряжения, поданного на него. Напомню, что полупроводники при обратном включении имеют очень большое внутреннее сопротивление (гораздо большее чем стоящий в цепи резистор). Следовательно все сетевое напряжение осядет именно на светодиоде.

Вариант №2 » подключение светодиода с защитой от обратного напряжения.

В этом варианте схемы подключения индикаторного светодиода к сетевому напряжению 220 вольт имеется защита от чрезмерного высокого напряжения обратной полуволны, что подается на светодиод. То есть, в цепь добавлен обычный диод, который включен той же полярностью, что и светодиод. В итоге все излишнее высокое напряжение оседает на полупроводниках (при обратном включении питания, обратной полуволне переменного тока). Тот ток, что возникает в цепи при обратной полуволне настолько настолько мал, что его не хватает для пробиться светодиода при обратном его включении. Таким образом данная схема уже будет нормально работать. Хотя в этом варианте все же имеются свои недостатки, а именно будет достаточно сильно греться резистор. Его мощность должна быть не менее 2 Вт. Этот нагрев приводит к тому, что схема весьма не экономна, у нее низкий КПД. Помимо этого поскольку светодиод будет светить только при одной полуволне, то рабочая частота светодиода будет равна 25 Гц. Свечение светодиода при такой частоте будет восприниматься глазом с эффектом мерцания.

Вариант №3 » альтернативная схема подключения светодиода к 220 с защитой от обратного напряжения.

Эта схема похожа не предыдущую. Она также имеет защиту от чрезмерного напряжения обратной полуволны переменного напряжения. Если в первой схеме защитный диод стоял последовательно со светодиодом, то в данной схеме диод подключен параллельно, и имеет уже обратное включение относительно светодиоду. При одной полуволне переменного напряжения будет гореть индикаторный светодиод (на котором будет падение напряжения до рабочей величины светодиода), а при обратной полуволне диод будет находится в открытом состоянии и на нем также будет падение напряжения до величины (порядка 1 вольта) недостаточной для пробоя светодиода. Как и в предыдущей схеме недостатками будет значительный нагрев резистора и видимое мерцание светодиода, вдобавок эта схема будет больше потреблять электроэнергии из-за прямого включения диода.

Хотя вместо обычного диода можно поставить еще один светодиод.

Тогда в одну полуволну будет гореть один светодиод, ну а в обратную второй. Хотя в этом случае и будут светодиоды защищены от высокого обратного напряжения, но гореть каждый из них будет все равно с частотой 25 герц (будут оба мерцать).

Вариант №4 » лучшая схема с токоограничительным конденсатором, резистором и выпрямительным мостом.

Данный вариант схемы подключения индикаторного светодиода к сети 220 вольт считаю наиболее лучшим. Единственным недостатком (если можно так сказать) этой схемы является то, что в ней больше всего деталей. К достоинствам же можно отнести то, что в ней нет элементов, которые чрезмерно нагревались, поскольку стоит диодный мост, то светодиод работает с двумя полупериодами переменного напряжения, следовательно нет заметных для глаза мерцаний. Потребляет эта схема меньше всего электроэнергии (экономная).

Работает данная схема следующим образом. Вместо токоограничительного резистора (который был в предыдущих схемах на 24 кОм) стоит конденсатор, что исключает нагрев данного элемента. Этот конденсатор обязательно должен быть пленочного типа (не электролит) и рассчитан на напряжение не менее 250 вольт (лучше ставить на 400 вольт). Именно подбором его емкости можно регулировать величину силы тока в схеме. В таблице на рисунке приведены емкости конденсатора и соответствующие им токи. Параллельно конденсатору стоит резистор, задача которого сводится всего лишь к разряду конденсатора после отключения схемы от сети 220 вольт. Активной роли в самой схеме запитки индикаторного светодиода от 220 В он не принимает.

Далее стоит обычный выпрямительный диодный мост, который из переменного тока делает постоянный. Подойдут любые диоды (готовый диодный мост), у которых максимальная сила тока будет больше тока, потребляемого самим индикаторным светодиодом. Ну и обратное напряжение этих диодов должно быть не менее 400 вольт. Можно поставить наиболее популярные диоды серии 1N4007. Они дешево стоят, малы по размерам, рассчитаны на ток до 1 ампера и обратное напряжение 1000 вольт.

В схеме есть еще один резистор, токоограничительный, но он нужен для ограничения тока, который возникает от случайных всплесков напряжения, идущие от самой сети 220 вольт. Допусти если кто-то по соседству использует мощные устройства, содержащие катушки (индуктивный элемент, способствующий кратковременным всплескам напряжения), то в сети образуется кратковременное увеличение сетевого напряжения. Конденсатор данный всплеск напряжения пропускает беспрепятственно. А поскольку величина тока этого всплеска достаточна для того, чтобы вывести из строя индикаторный светодиод в схеме предусмотрен токоограничительный резистор, защищающий схему от подобный перепадов напряжения в электрической сети. Этот резистор нагревается незначительно, в сравнении с резисторами в предыдущих схемах. Ну и сам индикаторный светодиод. Его вы выбираете уже сами, его яркость, цвет, размеры. После выбора светодиода подбирайте соответствующий конденсатор нужной емкости руководствуясь таблицей на рисунке.

Видео по этой теме:

P.S. Альтернативным вариантом электрической светодиодной подсветки может быть классическая схема подключения неоновой лампочки (параллельно которой ставится резистор где-то на 500кОм-2мОм). Если сравнивать по яркости, то все таки она больше у светодиодной подсветки, ну а если особая яркость не требуется, то вполне можно обойтись данным вариантом схемы на неоновой лампе.

Как подключить светодиоды к сети 220 Вольт

Контроллер RGB 24AВ настоящее время использование энергоэффективного освещения практически любого места вашей квартиры, дома, дачи или офиса с помощью современных LED светильников не является проблемой. Разноцветные светодиодные полосы просты в установке, они оборудованы контроллерами и подключаются к стандартной сети напряжением 220 Вольт.

Это позволяет добавлять необходимое количество красного, белого, синего или зеленого света везде, где только захочется. Кроме того, нужно не забыть про пульт ДУ (дистанционного управления), позволяющий полностью контролировать яркость освещения, его цвет и режим свечения.

Благодаря наличию двусторонних светодиодных лент, они очень легко устанавливаются, чтобы подключить их к сети напряжением 220, вам не потребуется вызов электрика.

Применение пульта ДУ для настройки порядка изменения цветов обеспечивает создание массива цветовых схем. Использование контроллеров для светодиодов позволяет легко решать данные проблемы. Самоклеящиеся ленты светодиодов можно легко установить почти в любом месте – для освещения шкафов, кладовых, сантехники и гаражных полок добавьте столько полос, сколько вам нужно. С их помощью наша жизнь делается безопаснее, освещаются травмоопасные зоны и острые углы в вашей квартире или доме.

Управляются LED ленты при помощи 24-х кнопочного пульта ДУ контроллером для светодиодов. Для красивого освещения вашего шкафа, книжных полок, камина, спальни и много другого можно изменять мощность, а также время их включения/выключения на расстоянии, либо выбрать один цвет из широкого спектра цветов. Пульт можно использовать для быстрого выбора из 15-ти цветовых оттенков зеленого, белого, красного и синего цвета, либо выбрать дневной свет, чтобы придать более естественный вид освещаемым предметам.

Реостат (димер) используется для выбора одной из семи ступеней световой интенсивности или переключения между четырьмя предварительно установленными режимами освещения. Этим создается идеальная атмосфера. Режим Fade (плавного угасания) позволяет автоматически регулировать яркость светодиодов в избранной цветовой гамме и осуществлять плавный переход между свечениями различных цветов.

Разработанные по современной технологии контроллеры светодиодов и подключения к электрической сети напряжением 220 Вольт являются очень эффективными. В сравнении с обыкновенными люминесцентными лампами и тем более лампами накаливания такие LED ленты являются намного более энергосберегающими, что позволяет сэкономить ваши деньги.

Светодиодная лента 220В, соединительная и разностная лента на 12 вольт

Многие планируют освещение и то ли не догадываются, что там светодиодная лента 220В. Не требует блока питания 12В, только миниатюрные выпрямители, через которые подключается непосредственно к розетке. Очевидным преимуществом является простота использования и возможности подключения, практически эквивалентные светодиодной лампе. Кроме того, есть очевидные достоинства и недостатки.

Типы диодных лент 220В

Популярные модели SMD 5050 и SMD3528

Виды кормов 220 состоят из нескольких видов, это светодиоды 3528, 5050, 2835, 3014 и мощные SMD 5630.Наиболее распространены светодиодные ленты 5050 и 3528, которые легко купить в России, но остальные придется заказывать у китайцев, но покупать у них не советую обманутые. Внешне почти не отличим от обычного, но имеет маркировку, на которую он рассчитан. Особенностью является то, что его обычно режут только кратным 1 метру или кратным 50 см. Это не работает, чтобы отрезать 30 см или 80 см.

Основные настройки:

  1. кратность резов 50, 100, 200 см;
  2. Мощность

  3. Вт на метр;
  4. степень защиты от влаги;
  5. красочная температура.

Стандартно доступны различные версии по степени защиты от влаги. Защита может быть IP67, IP68 в виде силиконовой трубки, такие протечки позволят им работать во влажных помещениях, таких как сауны и на улицах. По мнению моих коллег, достойно работающих в суровых условиях высоких и низких температур. Основание может быть гибким и жестким, за счет того, что на жестком основании измерительный элемент превращается в линейку светодиода или модуля. Из этих линий можно собрать светильник.По типу монтажа может быть самоклеящимся на акриловой липкой ленте и не иметь клеящей основы.
Устройство и принцип работы

Устройство и принцип работы

Dual Feed в 2 раза шире

Рассмотрим, как они питаются от высокого напряжения:

  1. с использованием обычных светодиодов с напряжением 3,3 В — 3,5 В;
  2. им требуется полярное питание, которое создает диодный мост, иначе они будут мигать с частотой 50 Гц;
  3. Мультипликаторы могут разрезать только 50 и 100 см., так что светодиоды включены последовательно в цепь 60 светодиодов на метр.
  4. Почему 60? делим на 220V 3,3V шт., получаем около 60 подключений таких серий, блок питания на 12V нам не нужен.

Для повышения надежности светодиодная лента 220В используется для подключения диодов попарно, в случае выхода из строя одного из диодов ток пройдет через остальные, но повышенная нагрузка ляжет на него.

Мощный SMD 5630 при потреблении более 10 Вт на метр потребует радиатора или алюминиевого профиля для охлаждения.Но повышенную мощность можно получить на более слабых светодиодах. Склеить две детали рядом, получив двойную, с увеличенной вдвое шириной. Кроме того, широкая база лучше отводит тепло при нагреве.

Цветной RGB, резистор на светодиод или два.

Цвета светового потока такие же, как у обычного :. Белые, красные, зеленые, синие и трехцветные светодиодные ленты RGB RGB на 220В требуют специальных регуляторов яркости, каждый цвет рассчитывается на те же 220 вольт, найти их сложно, потому что почти все они вырабатываются на 12 вольт.Поэтому советую покупать готовые комплекты.

Контроллер для RGB на 220 вольт

Как подключить светодиодную ленту к 220В

Подключение планки 220 Вольт

Подключение очень простое, нужно только подключить пару проводов с правильной полярностью. В случае цветной полоски подключите в соответствии с проводом контроллера RGB с цветной маркировкой.

Этапы подключения:

  1. отрежьте необходимую длину, кратную длине, указанной производителем, обычно 50 или 100 см.;
  2. , если вы используете герметик, в конце разреза нанесите герметик и нанесите силиконовый соединитель, в виде кольца;
  3. Вставляем разъем и прикручиваем к герметику;
  4. правильной полярности подключить провод от выпрямителя;
  5. проверить всю полосу на герметичность, не допускать попадания воды внутрь.

Соединение и пломбирование

Выпрямитель, через который он подключен, состоит из диодного моста и также имеет собственное питание. Он может иметь мощность 700 Вт., Хватит и на обычных 100 метров светодиодной ленты, или на 40 метров прочной. Этого достаточно, чтобы осветить очень большую комнату. Стоимость этого выпрямителя очень невысока, его очень легко сделать своими руками, купив 4 диода или произведя финальную сборку в магазине радиодеталей.

Выпрямитель со штекером для подключения к сети

Преимущество ленты перед обычной состоит в отсутствии требований к толщине силовых проводов. В отличие от низкого напряжения, для которого требуются очень толстые кабели, при таких высоких требованиях нет, их можно соединять любыми тонкими проводами.Провода сечением 0,75 квадратных миллиметра без проблем тянут мощность 1500Вт.

Заправочный выпрямитель

Поскольку выпрямитель представляет собой диодный мост и в нем отсутствуют конденсаторы, которые будут сглаживать пульсации напряжения в сети, вся полоска мерцает с частотой 100 Герц. Согласно СанПиН, такие пульсации недопустимы в жилых помещениях, особенно там, где читаете или работаете. По этой причине не рекомендуется использовать в квартирах. Но пульсации можно уменьшить, если установить в выпрямитель высоковольтный конденсатор до 400 В, чем мощнее, тем больше требуется конденсатора.Тесно вопросом не занимался, но обычным светодиодным лампам мощностью 6 Вт требовалось 40 мкФ, чтобы вызвать скачок скорости, но полностью от них не избавиться. Чтобы использовать его, используйте одинаковую мощность на каждые 6 Вт.

Основные отличия

Разъем для подключения

Подводя итог, выделим основные достоинства и недостатки.

Преимущества.

  • Они не требуют дорогостоящего блока питания, если нужно подключить 1-3 метра, то сунул в ближайшую розетку и запустил.
  • Подключайте тонкие провода так как сила тока мала.
  • Длина цельного куска может достигать 100 м. Или 70 Вт.

Недостатки.

  • Высокое напряжение требует особой осторожности при установке и эксплуатации.
  • Может быстро выйти из строя, если покупать дешевый китайский.
  • Ремонт герметика будет очень сложным.
  • Обрезайте только длину, кратную 100 или 50 сантиметрам.
  • Светодиод

  • мигает с частотой 100 Герц, глаз не видно, но воздействие на сознание человека утомляет и может появиться головная боль.

Эти недостатки ограничивают область применения, его можно установить в качестве вторичного освещения светодиодным кухонным освещением, освещением кладовой, гаража, коридора или гирлянд. В коммерческой сфере возможно освещение зданий, рекламных вывесок. Под новый год строители украшают башенный кран и высоту стрелы.

Обзор светодиодных лент с подключением 220 Вольт без трансформатора

Светодиодная лента

, работающая от сети переменного тока 220 В, стала новым достижением производителей диодной продукции.Разницы с низковольтными аналогами практически нет.
В настоящее время высоковольтная лента 220В стала популярной в коммерческой деятельности, шоу-бизнесе, где использование светоэффектов привлекает внимание посетителей. Светодиодные ленты можно использовать при организации концертной площадки, световых рекламных щитов, создания крупномасштабных надписей, фигур или музыкальных фонтанов. Лента с питанием 220В также может быть использована в некоммерческой деятельности: оформление дизайнерских интерьеров и экстерьеров.

Области применения светодиодных лент

Светодиодные ленты 220 В предназначены для наружного использования, выполнены в силиконовой оболочке и имеют максимальную защиту. Они могут быть одно- и многоцветными. Не требуют использования блоков питания, преобразователей. Они подключаются через силовой кабель диодного моста, который преобразует переменный ток в постоянный.

Есть разные разновидности (светодиодная лента на тросике или светящиеся полосы на гибкой 220). По сути, Rope Light — это прозрачный шнур из гибкого полимера, внутри которого изначально расположена миниатюрная лампа, а теперь и современные светодиодные светодиоды, способные работать без питания напрямую от 220В.Внутреннее пространство шнура заполнено поливинилхлоридом с целью гирметичности степени защиты. По внешнему виду и способу использования ленты 220 Веревка и шнур очень похожи.

Современная светодиодная лента 220ВЛента дюролайт

ассортимент продукции

Классификация ленты 220В отличается от низковольтной продукции и основывается на технических характеристиках. В зависимости от мощности различают следующие варианты:

  • Светодиодная лента питание 220 вольт 4.4 Вт на метр;
  • Светодиодная лента 220 вольт мощностью 7,2 Вт на метр;
  • Светодиодная лента 220 вольт мощностью 14,4 Вт на метр.

По характеру чипов продукты делятся на множество видов. В основном ленты производятся SMD LED 3014, 2835, 3035, 5060, 5050, 3528 или более современными диодами SMD 5630. Количество и разнообразие микросхем на метр зависит от интенсивности света и потребления тока.

Светодиодная лента в бухте 100 м

По уровню защиты ленты IP68, IP67.Светодиодные продукты с высокой степенью защиты исключают контакт пользователя с токоведущими частями, поэтому вы можете использовать их на открытом воздухе. То есть они оснащены силиконовой трубкой, предназначены для использования на открытом воздухе и во влажных помещениях. По мнению специалистов, такая лента устойчива к перепадам температур.
Питатели могут быть жесткими или гибкими, в зависимости от базы для диодов.
В отличие от других высоковольтных лент отличается цветом и мощностью свечения. По типу монтажа они могут быть самоклеящимися или без клеевого слоя. Также стоит отметить светодиодную RGB-ленту 220 Вольт, собранную на трехцветных диодах (в основном SMD 5050).Они напечатаны на гибкой основе там 4 контакта, а подключение осуществляется через специальный контроллер RGB. Цветная декоративная лента бывает белого, синего, красного и зеленого трехцветного цветов.
Недавно в магазинах продавалась веревочная лента, представляющая собой шнур из прозрачного полимера, в котором находятся светодиоды. Внутри шнура — ПВХ, повышающий уровень безопасности и прочности ледяных лент 220 ат. По способу использования и внешнему виду они похожи на веревочные шнуры.

Характеристики светодиодной продукции

Из-за высокого напряжения Tape 220 может иметь последовательное соединение длиной до 100 м.Поэтому они продаются в катушках по 50, 100 м. Это позволяет охватить большой периметр освещения от единого сетевого подключения 220 Вольт.
определяется мощность (Вт / м), уровень защиты от влаги и цветовая температура.
Светодиодные ленты 220В Стоят аналоги меньшего размера, где напряжение 12 и 24 вольт. Это прочные и экономичные источники света. Освещение подключается к простой розетке, обеспечивающей уровень освещенности, соответствующий лампам накаливания. При правильном подключении и установке лента проработает до 50 тысяч часов интенсивного использования.Снижение стоимости продукта за счет отсутствия дорогостоящего блока питания.
Кратность — это нарезка светодиодных лент 1 метр, не всегда удается отмерить необходимую длину. Учитывая нестабильное напряжение, при котором возможны колебания или пульсации напряжения, быстрый разрыв с дешевой некачественной светодиодной лентой.
Еще один недостаток продукции — жесткость герметичной силиконовой трубки, в которой находится ремень, из-за чего его нужно застегивать в 4 точках на метр. Это исключает провисание или неравномерную посадку.Кормушки не подходят для ремонта, так как при замене микросхемы нарушается герметичный слой. У некоторых моделей отсутствует клеевой слой. Продукция китайских производителей отличается низким качеством. Поскольку мерцание вредно и опасно, высоковольтные ленты имеют ограниченную область применения. например: уличные фонари, реклама. Если светодиодные ленты постоянно устанавливаются на улице, примерно через 5 — 6 лет начинается разрушение силиконовой оболочки.

Учитывая все достоинства и недостатки лент, их желательно использовать при наружном освещении фасадов различных зданий.Для создания динамических световых эффектов за счет смены цветов Вам необходимо купить RGB ленту 220 Вольт.

Устройство и принцип действия

Конструктивно главной особенностью является 220 лент, что они не имеют источника питания в виде понижающего преобразователя. Стабилизатор напряжения питания заменен диодным мостом, который находится в герметичном корпусе. Одна часть включает в себя проводную сеть, а другая подключается к разъему ленточного кабеля. На выходе выпрямителя постоянное напряжение, равное 200В.

Основным преимуществом светодиодных лент 220В прямого подключения является то, что в отличие от обычных лент с питанием 12-24В, First позволяет создавать непрерывную ленту длиной 100 м, защищенную от влаги.
Во избежание перегрузки на светодиодах они соединены группами, через резисторы, компенсирующие превышение напряжения. В основном падение напряжения на светодиодах составляет 3,3-3,5 В, из-за чего в каждой группе содержится 60 микросхем. Для диодов необходима полярность питания, благодаря чему используется выпрямитель (диодный мост).После выпрямителя наблюдается скачок напряжения, что сказывается на качестве света.
Для управления световым потоком в конструкции установлен диммер. В RGB-планках установлен выделенный контроллер, функциональная нагрузка на который больше, чем у диммера.
При покупке высокомощных SMD-лент 5630 с потребляемой мощностью на 1 м больше 10 Вт, то нужно обратить внимание на наличие в конструкции алюминиевого монтажного профиля или радиатора охлаждения.

Схема включения

Схема подключения светодиодной ленты 220В

Схема подключения высоковольтной ленты несложная, выполняется в следующей последовательности:

  • отрежьте шнур нужной длины, сложите ленту наименьшего допустимого размера;
  • обрезанный конец монтируется в штифт соединителя, прикрепляется клеем или герметиком;
  • с правильной полярностью, разъем подключен к выходному выпрямителю;
  • крышка обратной стороны откидной створки;
  • Проверка конструкции и надежности соединений.

Выпрямитель, подключаемый через ленту, включает диодный мост и может иметь собственное питание. мощности выпрямителя 700 Ватт хватило бы на 40 м мощных лент и 100 м стандартных для освещения больших пространств. Цена выпрямителя будет невысокой, и делать это можно независимо от 4-х диодов.

Существенным преимуществом является отсутствие высоковольтных питающих трансформаторов, вместо которых установлено небольшое устройство с входными и выходными кабелями. При подключении к сети необходимо приобрести диодный мост с разъемами или тонкими медными проводами.Из-за высокого напряжения во время упражнений ток будет увеличиваться, поэтому можно использовать провода сечением до 1 мм2.

Видео:

Видео:

Как подключить светодиод к источнику переменного тока 220 В (с расчетом)

Описание:

В этом проекте я объяснил, как подключить светодиоды с источником переменного тока 220 В с помощью принципиальной схемы. Я также объяснил, как спроектировать бестрансформаторную схему питания светодиода 220В переменного тока с расчетом.

Схема подключения:

Схема светодиода 220В переменного тока очень проста и эффективна. Здесь я подключил последовательно 8 светодиодов (5 мм, 3 В) и запитал схему от бестрансформаторного источника питания.

Необходимые компоненты для этой цепи светодиода 220 В:

  1. 0,22 мкФ Конденсатор переменного тока 400 В
  2. Конденсатор постоянного тока 100 мкФ 35 В постоянного тока
  3. Резистор 560 Ом 1 Вт
  4. 1M Резистор 0,25 Вт
  5. 1N4007 Диод (4 шт.)
  6. 5 -мм светодиоды (3V) (8no)
  7. Zero PCB

Сделайте схему светодиода 220 В переменного тока на макетной плате

Сначала я сделал схему на макетной плате для тестирования.В обучающем видео я измерил все напряжение с помощью мультиметра, чтобы показать, как работает схема.

Обучающее видео по цепи светодиода 220 В переменного тока:

В этом видео я объяснил все детали этой цепи светодиода 220 В переменного тока.

Расчет бестрансформаторного источника питания

Чтобы спроектировать любой бестрансформаторный источник питания с конденсаторным отводом, сначала необходимо рассчитать значение емкости.

Как рассчитать значение емкости для бестрансформаторного источника питания?

1.Мы должны знать входное напряжение (Vrms) и необходимое выходное напряжение (Vreq) и ток (Iout).

2. Рассчитайте полное сопротивление (Z).
Z = (( Vrms X 1,41 ) — Vreq ) / Iout

3. Рассчитайте необходимое значение емкости (C).
C = 1 / ( 2 X 3,14 X частота X Z )

Я подробно объяснил в обучающем видео.

Сделайте схему светодиода на печатной плате

После тестирования схемы светодиода на макетной плате я сделал схему на нулевой плате.

Поместите печатную плату в коробку

Поскольку мы используем источник переменного тока 220 В, я поместил печатную плату в пластиковую коробку, чтобы избежать опасности поражения электрическим током.

Всегда соблюдайте меры безопасности при подключении источника питания 220 В.

Наконец-то !!

Теперь я могу легко подключить схему к сети переменного тока 220В. Здесь я буду использовать эту светодиодную схему в качестве ночника.

Надеюсь, вам понравился этот проект электроники.

Вы также можете подписаться на нашу новостную рассылку , чтобы получать больше таких полезных проектов электроники по электронной почте.

Пожалуйста, поделитесь своими отзывами об этом проекте Arduino. Спасибо за ваше время.

светодиодов (светоизлучающих диодов) | Electronics Club

Светодиоды (светодиоды) | Клуб электроники

Тестирование | Цвет |
Размеры и формы | Резистор |
Светодиоды последовательно | Светодиодные данные |
Мигает | Подставки

Смотрите также: Лампы | Диоды

LED = светоизлучающий диод

светодиода излучают свет, когда через них проходит электрический ток.

Электрические характеристики светодиода сильно отличаются от поведения лампы, и он должен быть защищен от
пропускание чрезмерного тока, обычно это достигается подключением резистора последовательно со светодиодом.
Никогда не подключайте светодиод напрямую к батарее или источнику питания.

светодиода должны быть подключены правильно, на схеме может быть указано a или
+ для анода и k или для катода (да, это действительно k, а не c,
для катода).Катод — это короткий вывод, и на корпусе может быть небольшое сглаживание.
круглых светодиодов. Если вы видите внутри светодиода, катод — это электрод большего размера, но
это не официальный метод идентификации.

Пайка светодиодов

Светодиоды

могут быть повреждены нагреванием при пайке, но риск невелик, если вы не будете очень медленными.
При пайке большинства светодиодов особых мер предосторожности не требуется.

Rapid Electronics: светодиоды


Тестирование светодиода

Никогда не подключайте светодиод напрямую к батарее или источнику питания , потому что светодиод может
быть разрушенным чрезмерным током, проходящим через него.

Светодиоды

должны иметь последовательно включенный резистор для ограничения тока до безопасного значения, для
в целях тестирования 1к
резистор подходит для большинства светодиодов, если напряжение питания составляет 12 В или меньше.
Не забудьте правильно подключить светодиод.

Пожалуйста, смотрите ниже объяснение того, как разработать подходящий резистор.
значение для светодиода.


Цвета светодиодов

Цвет светодиода определяется его полупроводниковым материалом, а не окраской.
«упаковки» (пластиковый корпус).Светодиоды всех цветов доступны в неокрашенном виде.
упаковки, которые могут быть рассеянными (молочного цвета) или прозрачными (часто называемыми «прозрачными от воды»).
Цветные упаковки также доступны в диффузных (стандартный тип) или прозрачных.

Синие и белые светодиоды могут быть дороже других цветов.

Двухцветные светодиоды

Двухцветный светодиод имеет два светодиода, подключенных «обратно параллельно» (один вперед, один назад).
объединены в один корпус с двумя выводами. Одновременно может гореть только один из светодиодов и
они менее полезны, чем трехцветные светодиоды и светодиоды RGB, описанные ниже.

Трехцветные светодиоды

Самый популярный тип трехцветного светодиода, в котором красный и зеленый светодиоды объединены в один.
пакет с тремя выводами. Их называют трехцветными, потому что смешанные красный и зеленый свет
кажется желтым, и он появляется, когда горят и красный, и зеленый светодиоды.

На схеме показана конструкция трехцветного светодиода. Обратите внимание на разные
длины трех выводов. Центральный вывод (k) является общим катодом для
оба светодиода, внешние выводы (a1 и a2) являются анодами для светодиодов, что позволяет
каждый должен быть освещен отдельно, или оба вместе, чтобы дать третий цвет.

Rapid Electronics: красный / зеленый светодиод

RGB светодиоды

светодиодов RGB содержат красный, зеленый и синий светодиоды в одном корпусе. Каждый внутренний светодиод можно переключить
включается и выключается по отдельности, позволяя производить диапазон цветов:

  • Красный + зеленый дает желтый
  • Красный + синий дает пурпурный
  • Зеленый + синий дает голубой
  • Красный + зеленый + синий дает белый

Можно получить более широкий диапазон цветов, изменяя яркость каждого внутреннего светодиода.

Rapid Electronics: RGB LED



Размеры, формы и углы обзора светодиодов

Светодиоды

доступны в самых разных размерах и формах.
«Стандартный» светодиод имеет круглое поперечное сечение диаметром 5 мм, и это, вероятно,
лучший тип для общего использования, но также популярны и круглые светодиоды диаметром 3 мм.

Светодиоды круглого сечения используются часто и их очень легко установить на
коробки, просверлив отверстие под диаметр светодиода, добавив пятно клея, поможет удержать
светодиод, если необходимо.Также доступны зажимы для светодиодов (изображенные на рисунке) для фиксации светодиодов в отверстиях.
Другие формы поперечного сечения включают квадрат, прямоугольник и треугольник.

Фотография © Rapid Electronics

Светодиоды различаются не только цветами, размерами и формами, но и углом обзора.
Это говорит вам, насколько распространяется луч света. Стандартные светодиоды имеют обзор
угол 60 °, но другие имеют узкий луч 30 ° или меньше.

Склад Rapid Electronics
особенно широкий выбор светодиодов и их веб-сайт является хорошим руководством к широкому ассортименту доступных
включая новейшие светодиоды высокой мощности.


Расчет номинала резистора светодиода

Светодиод должен иметь последовательно подключенный резистор для ограничения тока через светодиод.
иначе он перегорит практически мгновенно.

Номинал резистора R определяется по формуле:

R = номинал резистора в омах ().

В S = напряжение питания.

В L = напряжение светодиода (2 В или 4 В для синих и белых светодиодов).

I = ток светодиода в амперах (A)

Ток светодиода должен быть меньше максимально допустимого для вашего светодиода.Для светодиодов стандартного диаметра 5 мм максимальный ток обычно составляет 20 мА, поэтому значения 10 мА или 15 мА подходят для многих цепей.
Для расчета ток должен быть в амперах (А). Чтобы преобразовать мА в А, разделите ток в мА на 1000.

Если расчетное значение недоступно, выберите ближайшее стандартное значение резистора.
что на больше , так что ток будет немного меньше, чем вы выбрали.
Фактически, вы можете выбрать резистор большего номинала, чтобы уменьшить ток.
(например, для увеличения срока службы батареи), но это сделает светодиод менее ярким.

Например

Если напряжение питания V S = 9V, и у вас красный светодиод (V L = 2V),
требующий тока I = 20 мА = 0,020 А,

R = (9В — 2В) / 0,02А = 350,
так что выберите 390
(ближайшее стандартное значение, которое больше).

Напряжение светодиода

Напряжение светодиода V L определяется цветом светодиода.
Красные светодиоды имеют самое низкое напряжение, желтые и зеленые немного выше. Наибольшее напряжение имеют синий и белый светодиоды.

Для большинства целей точное значение не критично, и вы можете использовать 2 В для красных, желтых и зеленых светодиодов или 4 В для синих и белых светодиодов.

Расчет формулы светодиодного резистора по закону Ома

Закон Ома гласит, что сопротивление резистора R = V / I, где:

В = напряжение на резисторе (в данном случае = В S — В L )

I = ток через резистор

Итак, R = (V S — V L ) / I

Для получения дополнительной информации о расчетах см. Страницу закона Ома.



Последовательное подключение светодиодов

Если вы хотите, чтобы несколько светодиодов горели одновременно, их можно соединить последовательно.
Это продлевает срок службы батареи за счет освещения нескольких светодиодов таким же током, как и только один светодиод.

Все светодиоды, соединенные последовательно, пропускают один и тот же ток , поэтому лучше всего, если они все
того же типа. Источник питания должен иметь достаточное напряжение, чтобы обеспечить около 2 В для каждого светодиода.
(4 В для синего и белого) плюс еще минимум 2 В для резистора.Чтобы выработать ценность
для резистора вы должны сложить все напряжения светодиодов и использовать это для V L .

Пример расчетов:

Для последовательного красного, желтого и зеленого светодиода требуется напряжение питания не менее
3 × 2 В + 2 В = 8 В, поэтому батарея на 9 В и будет идеальной.

В L = 2 В + 2 В + 2 В = 6 В (три напряжения светодиодов суммируются).

Если напряжение питания V S составляет 9 В, а ток I должен быть 15 мА = 0,015 А,

Резистор R = (V S — V L ) / I = (9-6) / 0.015 = 3 / 0,015
= 200,

, поэтому выберите R = 220
(ближайшее стандартное значение, которое больше).

Избегайте параллельного подключения светодиодов!

Соединение нескольких светодиодов параллельно с одним общим резистором, как правило, является плохой идеей.

Если для светодиодов требуется немного другое напряжение, загорится только светодиод с самым низким напряжением, и он
может быть разрушен более сильным током, протекающим через него. Хотя идентичные светодиоды могут быть
успешно подключены параллельно с одним резистором, что редко дает полезные преимущества
потому что резисторы очень дешевые, а ток такой же, как при подключении светодиодов по отдельности.

Если светодиоды включены параллельно, у каждого из них должен быть свой резистор.


Чтение таблицы технических данных для светодиодов

Веб-сайты и каталоги поставщиков обычно содержат таблицы технических данных для таких компонентов, как светодиоды.
Эти таблицы содержат много полезной информации в компактной форме, но они могут
быть трудным для понимания, если вы не знакомы с используемыми сокращениями.
Вот важные свойства светодиодов:

  • Максимальный прямой ток, I F макс.
    «Вперед» означает, что светодиод правильно подключен.
  • Типичное прямое напряжение, В F тип.
    Это V L в расчете светодиодного резистора,
    около 2В или 4В для синих и белых светодиодов.
  • Сила света
    Яркость при заданном токе,
    например 32 мкд при 10 мА (мкд = милликандела).
  • Угол обзора
    60 ° для стандартных светодиодов, другие излучают более узкий луч около 30 °.
  • Длина волны
    Пиковая длина волны излучаемого света, она определяет цвет светодиода,
    е.грамм. красный 660 нм, синий 430 нм (нм = нанометр).

Следующие два свойства можно игнорировать для большинства цепей:

  • Максимальное прямое напряжение, В F max.
    Это можно игнорировать, если у вас есть подходящий резистор, включенный последовательно.
  • Максимальное обратное напряжение, В R max.
    Этим можно пренебречь, если светодиоды подключены правильно.

Мигающие светодиоды

Мигающие светодиоды выглядят как обычные светодиоды, но содержат ИС (интегральную схему).
а также сам светодиод.Микросхема мигает светодиодом с низкой частотой, например 3 Гц (3 вспышки в секунду).
Мигающие светодиоды предназначены для прямого подключения к определенному напряжению питания, например, 5 В или 12 В.
без последовательного резистора. Обратитесь к поставщику, чтобы узнать безопасный диапазон напряжения питания для
конкретный мигающий светодиод. Частота вспышек фиксированная, поэтому их использование ограничено, и вы можете предпочесть
построить свою собственную схему для мигания обычного светодиода, например
Проект мигающего светодиода, в котором используется
555 нестабильная схема.

Rapid Electronics: мигающие светодиоды


Светодиодные дисплеи

Светодиодные экраны

представляют собой пакеты из множества светодиодов, расположенных по схеме, наиболее знакомой схеме.
является 7-сегментным дисплеем для отображения чисел (цифры 0–9).Картинки ниже
проиллюстрировать некоторые из популярных дизайнов.

Гистограмма, 7-сегментные, звездообразные и матричные светодиодные дисплеи

Фотографии © Rapid Electronics

Rapid Electronics: светодиодные дисплеи

Подключение выводов светодиодных дисплеев

Существует много типов светодиодных дисплеев, поэтому для получения дополнительной информации см. Каталог или веб-сайт поставщика.
штыревые соединения. На диаграмме справа показан пример из
Быстрая электроника.
Как и многие 7-сегментные дисплеи, этот пример доступен в двух версиях:
Общий анод (SA) со всеми анодами светодиодов, соединенными вместе, и общий катод (SC)
со всеми катодами, соединенными вместе.Буквы a-g относятся к 7 сегментам, A / C
является общим анодом или катодом, в зависимости от ситуации (на 2 штыря). Обратите внимание, что некоторые контакты
нет (NP), но их позиция все еще пронумерована.

См. Также: Драйверы дисплея.


Rapid Electronics
любезно разрешили мне использовать их изображения на этом веб-сайте, и я очень благодарен за их поддержку.
У них есть широкий ассортимент светодиодов, других компонентов и инструментов для электроники, и я рад
рекомендую их как поставщика.


Книги по комплектующим:


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию.Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет
используется только для ответа на ваше сообщение, оно не будет передано никому.
На этом веб-сайте отображается реклама, если вы нажмете на
рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден.
Рекламодателям не передается никакая личная информация.
Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов.
(включая этот), как объяснил Google.
Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста,
посетите AboutCookies.org.

electronicsclub.info © Джон Хьюс 2021 г.

Руководство по подключению светодиодов

— как подключить полосковые лампы, диммеры и элементы управления

Подключение светодиодных лент — подключение трансформаторов, приемников и контроллеров Рик Бриггс2018-03-23T16: 40: 42 + 00: 00
Уведомление : Попытка получить доступ к смещению массива по значению введите bool в / home / forge / www.instyleled.co.uk/public/wp-content/themes/Avada/includes/lib/inc/class-fusion-images.php в строке 188

Уведомление : Попытка получить доступ к смещению массива по значению типа bool в /home/forge/www.instyleled.co.uk/public/wp-content/themes/Avada/includes/lib/inc/class-fusion-images.php в строке 188

Уведомление : Попытка получить доступ к смещению массива по значению типа bool в /home/forge/www.instyleled.co.uk/public/wp-content/themes/Avada/includes/lib/inc/class-fusion-images.php в строке 188

Уведомление : Попытка получить доступ к смещению массива по значению типа bool в /home/forge/www.instyleled.co.uk/public/wp-content/themes/Avada/includes/ lib / inc / class-fusion-images.php в строке 188

Уведомление : попытка доступа к смещению массива по значению типа bool в /home/forge/www.instyleled.co.uk/public/ wp-content / themes / Avada / includes / lib / inc / class-fusion-images.php в строке 188

Уведомление : Попытка получить доступ к смещению массива для значения типа bool в / home / forge / www.instyleled.co.uk/public/wp-content/themes/Avada/includes/lib/inc/class-fusion-images.php в строке 188

Уведомление : Попытка получить доступ к смещению массива по значению типа bool в /home/forge/www.instyleled.co.uk/public/wp-content/themes/Avada/includes/lib/inc/class-fusion-images.php в строке 188

Уведомление : Попытка получить доступ к смещению массива по значению типа bool в /home/forge/www.instyleled.co.uk/public/wp-content/themes/Avada/includes/lib/inc/class-fusion-images.php в строке 188

Уведомление : Попытка получить доступ к смещению массива по значению типа bool в /home/forge/www.instyleled.co.uk/public/wp-content/themes/Avada/includes/ lib / inc / class-fusion-images.php on line 188

Что это и как работает?

Разработка и внедрение технологии светоизлучающих диодов (LED) во всем диапазоне осветительных приложений были захватывающими в последние несколько лет.Несмотря на присущую светодиодам высокую эффективность электрооптического преобразования, светодиодный светильник настолько хорош, насколько хорош его драйвер. Потенциал этой революционной технологии освещения может быть раскрыт только тогда, когда показатели производительности светодиодных драйверов будут последовательно согласованы с электрическими характеристиками светодиодного источника света. Светодиодная система освещения представляет собой синергетическое сочетание источника света, драйверов светодиодов, систем управления температурой и оптики. Поскольку драйверы являются единственным компонентом, который существенно влияет на фотометрические характеристики и качество света светодиодов в системе освещения, они играют решающую роль в более обширных и интенсивных применениях светодиодных технологий.

Что такое светодиодный драйвер?

Драйвер светодиодов — это электронное устройство, регулирующее мощность светодиода или цепочки (или цепочек) светодиодов. Светодиоды представляют собой твердотельные полупроводниковые устройства, пропитанные или легированные слоями для создания p-n-перехода. Когда ток протекает через легированные слои, дырки из p-области и электроны из n-области инжектируются в p-n-переход. Они рекомбинируют, чтобы генерировать фотоны, которые мы воспринимаем как видимый свет. Преобразование тока в световой поток почти линейное, увеличение входного тока позволяет большему количеству электронов и дырок рекомбинировать в p-n-переходе, и, таким образом, генерируется больше фотонов.

В отличие от обычных источников света, которые работают напрямую от источника переменного тока (AC), светодиоды работают от входа постоянного или модулированного прямоугольного сигнала, потому что диоды имеют полярность. Вход сигнала переменного тока приведет к тому, что светодиод будет гореть только примерно половину времени, когда сигнал переменного тока имеет правильную полярность, и сразу же погаснет при отрицательном смещении. Следовательно, постоянная подача постоянного электрического тока на фиксированный выход или переменный выход в допустимом диапазоне должна применяться к светодиодной матрице для стабильного, немигающего освещения.

Драйверы светодиодов

обеспечивают интерфейс между источником питания (линией) и светодиодом (нагрузкой), преобразуя входящую мощность сети переменного тока 50 Гц или 60 Гц при таких напряжениях, как 120 В, 220 В, 240 В, 277 В или 480 В, в регулируемый выходной постоянный ток. Существуют драйверы, предназначенные также для приема других типов источников питания, например, питания постоянного тока от микросетей постоянного тока или питания через Ethernet (PoE). Схема драйвера светодиода должна иметь невосприимчивость к скачкам напряжения и другим помехам в линии переменного тока в пределах заданного расчетного диапазона, а также отфильтровывать гармоники в выходном токе, чтобы они не влияли на качество вывода светодиодного источника света.Драйвер — это не просто преобразователь мощности. Некоторые типы светодиодных драйверов имеют дополнительную электронику для точного управления светоотдачей или для поддержки интеллектуального освещения.

Постоянный ток или постоянное напряжение?

Электрическая цепь, которая регулирует входящую мощность для обеспечения выхода постоянного напряжения, обычно называется источником питания, тогда как драйвер светодиода в строгом смысле означает электрическую цепь, которая обеспечивает выход постоянного тока. Сегодня «драйвер светодиода» и «источник питания светодиода» — очень неоднозначные термины, которые используются как синонимы.Несмотря на терминологическую двусмысленность, мы не можем позволить себе игнорировать существенные различия между схемами постоянного тока (CC) и постоянного напряжения (CV) для регулирования нагрузки светодиодов.

Драйверы светодиодов постоянного тока обеспечивают постоянный ток (например, 50 мА, 100 мА, 175 мА, 350 мА, 525 мА, 700 мА или 1 А) независимо от нагрузки по напряжению для модуля светодиодов в определенном диапазоне напряжений. Драйвер может питать один модуль со светодиодами, подключенными последовательно, или несколько светодиодных модулей, подключенных параллельно.Последовательное соединение является предпочтительным в архитектурах цепей CC, поскольку оно гарантирует, что все светодиоды имеют одинаковый ток, протекающий через их полупроводниковые переходы, а световой поток равномерен через светодиоды. Для параллельного подключения нескольких светодиодных модулей требуется резистор в каждом светодиодном модуле, что приводит к снижению эффективности и плохому согласованию тока. Большинство драйверов CC можно запрограммировать для работы в диапазоне выходного тока для точного сопряжения между драйвером и конкретным светодиодным модулем. Драйверы светодиодов постоянного тока используются, когда световой поток не должен зависеть от колебаний входного напряжения.Они присутствуют во многих типах продуктов общего освещения, таких как светильники типа downlight, troffers, настольные / торшеры, уличные фонари и светильники для высоких пролетов, для которых приоритетными являются высокое качество тока и точный контроль мощности. Драйверы CC поддерживают регулировку яркости как с широтно-импульсной модуляцией (PWM), так и с уменьшением постоянного тока (CCR). Работа источника питания в режиме CC обычно требует защиты от перенапряжения на случай чрезмерного сопротивления нагрузки или при отключении нагрузки.

Драйверы светодиодов постоянного напряжения предназначены для работы светодиодных модулей при фиксированном напряжении, обычно 12 В или 24 В.Каждый светодиодный модуль имеет собственный линейный или импульсный регулятор тока для ограничения тока с целью поддержания постоянного выходного сигнала. Обычно предпочтительно подавать постоянное напряжение на несколько светодиодных модулей или светильников, соединенных параллельно. Максимальное количество светодиодов или светодиодных модулей и прямое напряжение на них не должно превышать мощность источника питания постоянного тока. Цепь CV должна допускать рассеяние мощности при коротком замыкании нагрузки. Ограничители тока обычно имеют тепловое отключение для защиты цепи, когда на ограничитель тока подается напряжение, превышающее максимально допустимое.Драйверы CV часто используются в низковольтных светодиодных осветительных приборах, которые требуют простоты группового подключения при параллельном управлении, например, для управления светодиодными лентами, светодиодными модулями для световых коробов. Драйверы постоянного напряжения могут быть затемнены только при ШИМ.

Импульсный источник питания (SMPS)

Поскольку светодиоды очень чувствительны к колебаниям тока и напряжения, одна из наиболее важных функций драйвера светодиода заключается в уменьшении колебаний прямого напряжения на полупроводниковом переходе светодиодов.Импульсные источники питания работают путем модуляции электрического сигнала с использованием одного или нескольких переключающих элементов, таких как силовые полевые МОП-транзисторы, на высокой частоте, тем самым генерируя заданную величину мощности постоянного тока при изменении напряжения питания или нагрузки. Импульсные преобразователи, используемые в драйверах светодиодов, требуют, чтобы энергия сохранялась в виде тока с использованием катушек индуктивности и / или в виде напряжения с использованием конденсаторов, чтобы поддерживать выходной ток или напряжение на нагрузке во время цикла включения / выключения. Драйвер светодиодов AC-DC SMPS преобразует мощность переменного тока в мощность постоянного тока, которая затем преобразуется в мощность постоянного тока, способную правильно управлять светодиодами.

Для импульсного преобразования мощности в драйверах светодиодов доступны различные топологии схем для поддержки требований к нагрузке на светодиоды. Среди всех топологий SMPS наиболее часто используются понижающий, повышающий, понижающий-повышающий и обратноходовой типы.

Также известная как понижающий преобразователь, понижающая схема регулирует входное постоянное напряжение до желаемого постоянного напряжения с помощью ряда методов управления током, включая синхронное переключение, гистерезисное управление, управление пиковым током и управление средним током.Понижающая топология предназначена для драйверов светодиодов с питанием от сети, которые необходимы для управления длинной цепочкой светодиодов, при этом напряжение нагрузки поддерживается ниже напряжения питания. Понижающие цепи также часто встречаются в приложениях с низким напряжением, где входное напряжение питания относительно низкое (например, 12 В постоянного тока для автомобильного освещения) и работает только один светодиод. Понижающая топология позволяет создавать схемы с меньшим количеством компонентов при сохранении высокого КПД (90–95%). Однако напряжение нагрузки понижающей цепи должно быть менее 85% от напряжения питания.Более того, понижающие драйверы светодиодов не обеспечивают изоляцию между входными и выходными цепями.

Повышающий преобразователь предназначен для повышения входного напряжения до более высокого выходного напряжения примерно на 20% или более. Для схем повышения обычно требуется один индуктор, и они работают либо в режиме непрерывной проводимости (CCM), либо в режиме прерывистой проводимости (DCM), в зависимости от формы волны тока индуктора. В повышающих преобразователях малой мощности может использоваться накачка заряда, а не катушка индуктивности, в которой используются конденсаторы и переключатели для повышения выходного напряжения выше напряжения питания.Преобразователи на основе индуктивности обладают преимуществом в виде небольшого количества компонентов и высокой эксплуатационной эффективности (более 90%). Недостатком этой топологии является отсутствие изоляции между входными и выходными цепями. Повышающий преобразователь выдает импульсную форму волны, поэтому для уменьшения пульсаций тока требуется большой выходной конденсатор. ШИМ-регулирование яркости является сложной задачей из-за большого выходного конденсатора, а также управления с обратной связью, которое требует большой полосы пропускания для стабилизации преобразователя.

Пониженно-повышающие преобразователи

могут обеспечивать выходное напряжение выше или ниже входного, что делает их идеальными для приложений, в которых входное напряжение растет и падает с большими колебаниями (не более 20%).Колебания входного напряжения такого типа обычно возникают в осветительных устройствах с питанием от аккумуляторных батарей, например, в автомобильном освещении для строительной и сельскохозяйственной техники (вилочные погрузчики, тракторы, комбайны, экскаваторы, снегоочистители и т. Д.), А также в грузовых автомобилях и автобусах. Два типа преобразователей, которые часто используются в повышающих понижающих приложениях, известны как SEPIC (несимметричный преобразователь индуктивности первичной обмотки) и Cuk. Преобразователь SEPIC отличается использованием двух индукторов, предпочтительно двухобмоточного индуктора, который имеет небольшую площадь основания, низкую индуктивность рассеяния и способность увеличивать соединение обмоток для повышения эффективности схемы.В архитектуре SEPIC повышающая секция обеспечивает коррекцию коэффициента мощности (PFC), а понижающая секция выдает напряжение, равное, меньшее или большее, чем входное напряжение, в то время как выходная полярность обеих секций остается одинаковой. Топология Cuk сочетает в себе непрерывный выходной ток понижающего преобразователя и непрерывный входной ток повышающего напряжения, что дает Cuk наилучшие характеристики EMI и позволяет при необходимости уменьшать емкость. Понижающий-повышающий преобразователь представляет собой неизолированную схему драйвера.Как и повышающие преобразователи, повышающие преобразователи требуют защиты от перенапряжения для предотвращения повреждений из-за чрезмерно высокого напряжения в случае разомкнутой нагрузки.

Схема обратного переключения — это преобразователь с прерывистой проводимостью, который обеспечивает изоляцию сети переменного тока, накопление энергии и масштабирование напряжения. Он очень похож на повышающий преобразователь, но с разделением индуктивности, образующим трансформатор. Обратный трансформатор с как минимум двумя обмотками не только обеспечивает полную изоляцию между его входной и выходной цепями, но также допускает более одного выходного напряжения с разной полярностью.Первичная обмотка подключена к входному источнику питания, вторичная обмотка подключена к нагрузке. Магнитная энергия сохраняется в трансформаторе, когда переключатель включен, и в то же время диод имеет обратное смещение (т. Е. Блокируется). Когда переключатель выключен, диод смещен в прямом направлении, и магнитная энергия выделяется током, текущим из вторичной обмотки. В некоторых схемах обратного хода используется третья обмотка, называемая бутстрапом или вспомогательной обмоткой, для питания управляющей ИС. Более точный контроль среднего напряжения на конденсаторе, который используется для поддержания тока в нагрузке светодиода, когда преобразователь находится на первой ступени, требует изолированной обратной связи, обычно через оптрон.Цепи обратного переключения могут быть разработаны для очень широкого диапазона питающих и выходных напряжений с изоляцией от опасно высоких напряжений. Однако эти схемы менее эффективны (75 — 85%, более высокий КПД возможен при использовании дорогих деталей).

Линейный источник питания

Линейный источник питания использует элемент управления (например, резистивную нагрузку), который работает в своей линейной области для регулирования выхода. В схемах управления светодиодами этого типа напряжение, протекающее через резистор, чувствительный к току, сравнивается с опорным напряжением в контуре обратной связи для создания управляющего сигнала.Контроллер, который работает в линейной области системы обратной связи с обратной связью, регулирует выходное напряжение до тех пор, пока ток, протекающий через чувствительный резистор, не будет соответствовать напряжению обратной связи. Таким образом, ток, подаваемый на цепочку светодиодов, поддерживается до тех пор, пока прямое напряжение не превышает выходное напряжение с ограничением по падению. Линейные драйверы обеспечивают только понижающее преобразование, что означает, что напряжение нагрузки должно поддерживаться ниже, чем напряжение питания. Если напряжение нагрузки выше напряжения питания или напряжение питания сильно колеблется, необходим импульсный стабилизатор.

В приложениях

с питанием от сети переменного тока, которые предъявляют высокие требования к регулированию напряжения, обычно используются переключаемые линейные регуляторы для управления светодиодными лампами с длинной цепочкой светодиодов, соединенных последовательно. Переключаемые линейные регуляторы представляют собой комбинации нескольких линейных регуляторов, которые либо интегрированы, либо каскадированы в модульной форме. Эти линейные регуляторы, обычно разработанные в корпусах для поверхностного монтажа, используются для интеллектуальной регулировки количества подключенных к нагрузке светодиодов в цепочке во время цикла линии питания, чтобы напряжение нагрузки соответствовало мгновенному напряжению сети переменного тока.

Линейные драйверы светодиодов

представляют собой чрезвычайно упрощенное решение, которое устраняет необходимость в громоздких и дорогостоящих катушках, конденсаторах и реактивных (например, индуктивных и / или емкостных) входных фильтрующих элементах EMI / EMC. Значительно небольшое количество деталей и использование твердотельных компонентов позволяет уменьшить размеры переключаемого линейного регулятора до компактной ИС-микросхемы. Это делает линейные драйверы конкурентоспособным кандидатом для светодиодных ламп, стоимость и физический размер которых являются важными факторами при проектировании.Благодаря способности генерировать резистивную нагрузку диммера, аналогичную лампе накаливания, линейные драйверы светодиодов имеют общую совместимость с существующими диммерами с фазовой отсечкой (TRIAC), которые были разработаны для диммирования резистивных нагрузок.

Отличающаяся конкурентоспособностью затрат, невосприимчивостью к электромагнитным помехам / электромагнитной совместимости, малой занимаемой площадью и простотой конструкции, топология линейного управления вызывает все больший интерес в отрасли. Однако линейные драйверы борются с присущими им недостатками, которые не позволяют им войти в массовые приложения во многих категориях продуктов.

1. Линейный драйвер светодиода может иметь низкую эффективность, когда напряжение питания значительно превышает напряжение нагрузки.

2. Избыточная мощность выделяется в виде тепловой энергии, что приводит к увеличению термической нагрузки на схему драйвера и, скорее всего, на светодиоды, если тепло не рассеивается эффективно.

3. Ограничение необходимости поддерживать напряжение нагрузки ниже, чем напряжение питания в определенном диапазоне, приводит к дополнительному недостатку, заключающемуся в разрешении только ограниченного диапазона напряжения питания.

4. Линейные драйверы, доступные на рынке, представляют собой преимущественно недорогие схемы, которые не уделяют особого внимания устранению мерцания.

5. Неизолированная топология не обеспечивает гальванической развязки от сети переменного тока.

Switched Vs. Линейный

Конструкция драйвера светодиода предполагает множество компромиссов. При выборе между SMPS и линейными драйверами необходимо учитывать стоимость, эффективность, управляемость, срок службы, диммирование, размер, коэффициент мощности, мерцание, вход / выход, изоляцию от сети переменного тока и различные другие факторы.

Импульсные источники питания очевидно более эффективны, чем линейные, из-за их модуляции «0/1» (переключение ВКЛ / ВЫКЛ). Они могут быть разработаны для обеспечения высокой энергоэффективности, а также освещения без мерцания при сохранении высокого коэффициента мощности и низкого общего гармонического искажения (THD). Хотя линейные драйверы светодиодов задумывались как перспективное решение для управления светодиодами, в обозримом будущем SMPS по-прежнему будет предпочтительным решением для управления светодиодами для приложений, где первостепенное значение имеют эффективность, управление освещением, качество света и электрическая безопасность.В частности, цифровая управляемость драйверов SMPS, оснащенных технологией интеллектуальных датчиков и возможностью беспроводного подключения, обещает сделать возможным множество приложений Интернета вещей (IoT). Цифровая модуляция позволяет кодировать данные в двоичном формате для высокоскоростной оптической беспроводной связи (LiFi), что значительно расширяет прикладной потенциал драйверов SMPS.

Тем не менее, привлекательные особенности драйверов SMPS достигаются за счет их зависимости от громоздких, дорогих и ненадежных реактивных компонентов, таких как трансформаторы, катушки индуктивности и конденсаторы.Высокоскоростное переключение вызывает много шума, что приводит к относительно высокому уровню электромагнитных помех, которые необходимо фильтровать и экранировать с помощью дополнительных цепей. Эти дополнительные схемы могут значительно увеличить физические размеры и удвоить общую стоимость драйвера светодиода.

Самым большим недостатком драйверов SMPS, который также является наиболее привлекательной особенностью линейных драйверов, является их надежность. Схема управления SMPS использует большое количество компонентов, включая фильтры, выпрямители, схемы корректора коэффициента мощности (PFC) и т. Д.Сложная конструкция может снизить надежность схемы. Широкое использование алюминиевых электролитических конденсаторов в PFC в качестве компонента накопления энергии вызывает наибольшую озабоченность по поводу надежности драйвера SMPS. Электролитические конденсаторы известны своей высокой емкостью и высоким номинальным напряжением. Тем не менее электролит в конденсаторе со временем испарится. Скорость испарения линейно зависит от температуры. Высокая температура ускоряет испарение электролита, что вызывает уменьшение емкости и увеличение ESR (эквивалентное последовательное сопротивление).Повышенное ESR приводит к высоким колебаниям выходного напряжения и шуму. А конденсатор в итоге выходит из строя, когда высыхает электролит, что приводит к преждевременному выходу из строя всей системы освещения. Высокоскоростное переключение может вызвать электромагнитные помехи (EMI), которые отрицательно сказываются на окружающих элементах схемы. Это создает дополнительную проблему проектирования, которую необходимо преодолеть. Использование шумового фильтра приводит к увеличению объема и веса, а также стоимости производства.

С другой стороны, линейные драйверы обладают большим потенциалом благодаря ранее упомянутым преимуществам.Как правило, они живут дольше, чем драйверы SMPS, упрощают конструкцию лампы, снижают стоимость и значительно сокращают спецификации. Однако сложно разработать линейный драйвер с эффективностью преобразования и подавлением мерцания, сопоставимой со схемами SMPS. Эта технология в настоящее время используется неправомерно. Большинство производителей освещения воспринимают это только как дешевое решение для вождения. Хотя допустимо использовать линейные драйверы в светодиодных светильниках для приложений, где высококачественный свет и изоляция от сети переменного тока не являются главным приоритетом (например,грамм. наружное освещение), некоторые производители пытаются включить это недорогое решение для управления светодиодами в требующие визуального восприятия и чувствительные к безопасности приложения внутреннего освещения без улучшения качества выходного сигнала драйвера (контроль мерцания) и повышения электрической безопасности и рассеивания тепла в системе освещения.

Бортовой драйвер (DOB)

DOB — это типичная реализация топологии линейного вождения. Светодиодный модуль DOB, также называемый светодиодным двигателем переменного тока, вмещает светодиоды и всю электронику драйвера на печатной плате с металлическим сердечником (MCPCB).Технология DOB использует возможность монтажа MCPCB микросхем драйвера высокого напряжения (переключаемых линейных регуляторов). В отличие от схемы драйвера SMPS, которая должна быть установлена ​​на маршрутизируемой печатной плате FR4, эти микросхемы драйвера для поверхностного монтажа могут быть припаяны к плате MCPCB, установленной на светодиодах, без разводки цепи. Это полностью устраняет необходимость в специальной сборке драйверов и, таким образом, обеспечивает компактный форм-фактор. Еще одно преимущество конструкции DOB заключается в том, что отличная теплопроводность MCPCB может способствовать быстрому рассеиванию тепла, выделяемого из-за неэффективного преобразования линейного драйвера.

Использование энергии

Обработка мощности, которая происходит внутри SMPS, обычно приводит к неравномерному потреблению мощности из-за токовой импульсной модуляции. Способ, которым импульсные регуляторы потребляют импульсы тока из энергосистемы общего пользования, может вызывать изгибы и искажения формы волны тока в линии электропередачи, а также срабатывание предохранителей и автоматических выключателей при уровнях мощности ниже, чем допустимая мощность линии. Наличие этих гармонических искажений и нелинейных нагрузок может привести к различным проблемам, таким как перегрев нейтральных проводников и распределительных трансформаторов, отказ или неисправность оборудования для выработки и распределения электроэнергии, а также помехи в цепях связи и т. Д.С точки зрения энергопотребления, эти вредные помехи от нисходящего электрического оборудования должны быть запрещены. Поэтому коммунальные предприятия предъявляют нормативные требования к коэффициенту мощности (PF) и общему коэффициенту гармонических искажений (THD) электрического оборудования, включая светодиодные светильники с питанием от сети.

Коэффициент мощности — это отношение потребляемой мощности к поставляемой мощности и выражается числом от 0 до 1. У чисто резистивных нагрузок коэффициент мощности равен 1, потому что ток потребляется точно по фазе с линейным напряжением.Тем не менее, реактивные элементы, такие как конденсаторы и катушки индуктивности драйвера светодиода, потребляют дополнительный реактивный ток, который трудно измерить и, следовательно, предприятиям энергоснабжения невозможно получить прибыль. Что наиболее важно, эта реактивная мощность приведет к тому, что передаваемая мощность (полная мощность) будет больше, чем мощность, фактически необходимая светодиодному светильнику. Это может привести к тому, что инфраструктура коммунального предприятия будет работать с превышением мощности и может привести к потенциальному ущербу, если не будут приняты меры для защиты инфраструктуры от перегрузки дополнительной реактивной мощностью.Чем ближе коэффициент мощности к 1, тем точнее совпадают формы сигналов тока и напряжения. По мере уменьшения коэффициента мощности теряется больше мощности в виде реактивной мощности. В коммерческом и промышленном секторах коммунальные предприятия часто взимают дополнительную плату с конечных пользователей, которые работают с электрооборудованием с низким коэффициентом мощности, чтобы компенсировать возросшие затраты на генерацию и передачу.

Коэффициент мощности светодиодной лампы или светильника стал требованием спецификаций на многих рынках. Директива ЕС требует, чтобы светодиодный продукт с потребляемой мощностью более 25 Вт имел коэффициент мощности выше 0.9. В США и Design Light Consortium (DLC), и Energy Star имеют правила PF, аналогичные европейским. Штат Калифорния имеет четкие правила для значения коэффициента мощности, которое должно быть больше 0,9 для всех уровней мощности светодиодного освещения жилых и коммерческих помещений. Чтобы соответствовать нормативным значениям коэффициента мощности, драйверы светодиодов с питанием от сети, разработанные для сетей переменного тока, должны использовать некоторую форму коррекции коэффициента мощности для поддержания высокого коэффициента мощности в широком диапазоне входных напряжений. Схема коррекции коэффициента мощности (PFC) обычно используется для минимизации реактивной мощности и максимизации доступной мощности от источника и распределительных кабелей.Цепи PFC, которые включают в себя активные и пассивные PFC, формируют и синхронизируют по времени входной ток в синусоидальную форму волны, которая находится в фазе с линейным напряжением.

Общие гармонические искажения (THD) часто возникают одновременно с проблемой низкого коэффициента мощности. THD — это измерение искажения формы волны тока, вызванного нелинейными электрическими нагрузками, такими как нагрузки выпрямителя. Искаженные формы волны тока могут снизить коэффициент мощности и также создать гармонические искажения. Гармонические искажения также возникают, когда нагрузка потребляет ток, не похожий на истинную синусоиду.THD представлен в процентах. Чем ниже значение, тем лучше. Высокий коэффициент нелинейных искажений может вызвать проблемы в оборудовании распределения электроэнергии. Поэтому важно, чтобы драйверы светодиодов соответствовали нормативным значениям THD (обычно менее 20%) во всем диапазоне входного напряжения. THD подавляется схемой коррекции коэффициента мощности, которая должна эффективно формировать входной ток, чтобы генерировать минимальную энергию на более высоких частотах.

Регулировка яркости может влиять как на коэффициент мощности, так и на нелинейные искажения. Следовательно, необходимо измерять коэффициенты мощности и нелинейные искажения на выходах с полной и низкой яркостью.

Регулировка яркости

Переход от традиционной технологии освещения к твердотельному освещению обусловлен необходимостью повышения эффективности, контроля и взаимодействия. В основе управления освещением лежит технология затемнения, которая является неотъемлемой функцией систем управления освещением. Одним из преимуществ светодиодов является их способность мгновенно реагировать на изменения потребляемой мощности, которые регулируются драйвером светодиода. Эффективность регулирования яркости светодиодного драйвера становится все более важной, поскольку освещение становится более связным и адаптируемым к потребностям и предпочтениям пользователя.Наиболее часто используемые элементы управления диммером-драйвером включают симистор (триод для переменного тока), 0–10 В и DALI (интерфейс цифрового адресного освещения). Широтно-импульсная модуляция (PWM) и уменьшение постоянного тока (CCR) — наиболее распространенные методы, используемые для уменьшения яркости светодиодных нагрузок от драйвера.

Диммеры

с фазовым управлением работают путем отключения частей цикла переменного напряжения для управления светоотдачей. Цепи управления фазой включают в себя 2-проводное управление прямой фазой (передний фронт), 2-проводное управление обратной фазой (задний фронт) и 3-проводное управление прямой фазой (передний фронт).Регулировка яркости с управлением фазой часто используется в модернизированных приложениях, где протягивание новой или дополнительной проводки параллельной цепи или внутренней проводки управления может быть сложным и дорогостоящим. Однако драйвер светодиода должен быть спроектирован так, чтобы распознавать сигналы напряжения от схемы регулирования яркости и реагировать на них. Неспособность интерпретировать выходной сигнал переменного фазового угла при регулировке яркости может вызвать мерцание и уменьшить диапазон регулировки яркости.

0-10 В — это 4-проводной (горячий и нейтральный, плюс 2 низковольтных управляющих провода) метод диммирования, который иногда называют диммированием 1-10 В, поскольку наиболее типичные диммируемые драйверы 0-10 В могут диммироваться только со 100% ( 10 В) до 10% (1 В), а 0 В выключает лампу.В этом методе драйвер является источником тока для сигнала постоянного тока и, следовательно, надежен при диммировании, происходящем в драйвере. Схема управления отправляет управляющие сигналы низкого напряжения для настройки входа на драйвер, изменяя напряжение от 1 В до 10 В постоянного тока. Поскольку управляющий сигнал представляет собой небольшое аналоговое напряжение, длинные участки проводов могут вызвать падение напряжения и вызвать падение уровня сигнала. 0-10V — это универсальный протокол управления в осветительной отрасли, который широко используется в коммерческих осветительных приборах.Однако стандарты затемнения 0–10 В для архитектурных приложений в США не определяют значение минимальной светоотдачи и не учитывают форму кривой затемнения. Это может вызвать несовместимость элементов управления и устройств от разных производителей.

DALI, способный обеспечивать адресацию отдельных устройств и обратную связь по состоянию от нагрузок, обеспечивает большую гибкость в управлении освещением через 4-проводную систему (горячий и нейтральный плюс 2 низковольтных канала передачи данных без топологии).DALI обычно используется там, где стратегия управления требует, чтобы осветительный прибор реагировал более чем на один контроллер (например, переключатель ручного управления и датчик присутствия). DALI — это двунаправленный протокол, и система освещения DALI может управлять до 64 контрольными точками (драйверы, диммеры, реле) без использования центрального блока управления. Протокол DALI использует логарифмическое регулирование яркости, которое обеспечивает 256 ступеней яркости со стандартизированной кривой затемнения в диапазоне от 0,1% до 100%.

PWM управляет яркостью светодиода, изменяя рабочий цикл постоянного тока с частотой импульсов, достаточно высокой, чтобы быть незаметным для человеческого глаза.Отношение времени включения к времени выключения определяет воспринимаемую интенсивность света. Широтно-импульсная модуляция поддерживает постоянный прямой ток, что устраняет проблему смещения цвета и, таким образом, является преимуществом для приложений, требующих постоянного CCT в широком диапазоне диммирования. ШИМ-регулировка яркости обычно используется как для статической, так и для динамической регулировки интенсивности с источниками белого света, а также с светодиодами RGB. В приложениях для смешивания цветов RGB, затемнение с ШИМ позволяет точно отрегулировать яркость отдельных источников для получения желаемого цвета.Однако переключение на высокой скорости может создавать электромагнитные помехи. Драйверы PWM не могут быть установлены удаленно от источника света, потому что увеличенное расстояние передачи от драйвера к источнику света может мешать высокочастотным, чувствительным ко времени рабочим циклам.

CCR или аналоговое регулирование яркости регулирует интенсивность света путем изменения тока привода постоянного тока, протекающего через светодиод. Поскольку ток изменяется линейно, CCR практически не мерцает. Диммирование с постоянным током также может работать в более широком диапазоне светового потока, чем обычное диммирование с отсечкой фазы.К недостаткам CCR относятся низкая производительность при низких токах (ниже 10%), изменение цвета светодиодов при уменьшении яркости светодиодов до 20% от номинальной мощности и асинхронный отклик при более высоких токах из-за эффекта спада. Цепью диммирования CCR можно управлять с помощью различных протоколов, таких как 0–10 В, DALI и ZigBee. CCR и PWM могут быть объединены для обеспечения гибридного затемнения, так что можно использовать преимущества обоих методов.

Подавление мерцания

Мерцание — это амплитудная модуляция светового потока, которая может быть вызвана колебаниями напряжения в сети переменного тока, остаточной пульсацией выходного тока, подаваемого на нагрузку светодиода, или несовместимым взаимодействием между схемами диммирования и источниками питания светодиодов.Мерцание может вызывать другие временные световые артефакты (TLA), в том числе стробоскопический эффект (неправильное восприятие движения) и фантомный массив (узор появляется при движении глаз). TLA бывают как видимыми, так и невидимыми. Мерцание, возникающее на частотах 80 Гц и ниже, непосредственно видно глазу, а невидимое мерцание — это временные изменения, возникающие на частотах 100 Гц и выше. Стробоскопический эффект и фантомная матрица обычно возникают в диапазоне частот от 80 Гц до 2 кГц, их видимость варьируется в разных популяциях.Хотя невидимые TLA не воспринимаются человеческим глазом, они все же могут иметь ряд негативных последствий.

Мерцание и другие TLA — это нежелательные временные паттерны светового потока, которые могут вызывать напряжение глаз, нечеткое зрение, зрительный дискомфорт, снижение зрительной способности и, в некоторых случаях, даже мигрень и светочувствительные эпилептические припадки. Поэтому они являются одним из ключевых факторов при оценке качества света. Целевое использование искусственного освещения играет роль. Различные сценарии освещения могут допускать разный уровень временных световых артефактов.TLA могут быть менее важны для проезжей части, парковок и наружного архитектурного освещения или других приложений, где продолжительность воздействия искусственного света ограничена. Искусственный свет с высоким процентом мерцания не следует использовать как для внешнего, так и для рабочего освещения в домах, офисах, классных комнатах, гостиницах, лабораториях и промышленных помещениях. Освещение без мерцания имеет решающее значение не только для визуальных задач, требующих точного позиционирования глаз и условий, в которых уязвимые группы населения проводят много времени, но и для телевещания HDTV, цифровой фотографии и замедленной записи в студиях, стадионах и спортзалах.Видеокамеры могут улавливать TLA так же, как человеческий глаз улавливает эти эффекты.

Ключ к уменьшению мерцания заключается в драйвере светодиода, который предназначен для преобразования коммерческой мощности переменного тока в мощность постоянного тока и фильтрации любых нежелательных пульсаций тока. Достаточно большие пульсации, которые обычно возникают при частоте, в два раза превышающей напряжение сети переменного тока, в постоянном токе, подаваемом на светодиодную нагрузку, приводят к мерцанию и другим визуальным аномалиям с частотой 100/120 Гц. Таким образом, допустимый уровень пульсаций тока в светодиодах, например пульсация ± 15% (всего 30%), должен быть определен в драйверах светодиодов для различных приложений, где мерцание имеет значение.Пульсации можно сгладить, используя конденсатор фильтра. Одной из основных проблем при разработке драйверов является фильтрация пульсаций и гармоник без использования громоздких короткоживущих высоковольтных электролитических конденсаторов на первичной стороне. Светодиодные двигатели переменного тока по своей природе восприимчивы к явлению мерцания, потому что светодиоды фактически работают от того, что по сути является промежуточным напряжением постоянного тока, которое было бы в системе светодиодного освещения на основе SMPS. Быстрое изменение полярности вызывает мерцание интенсивности с частотой, вдвое превышающей синусоидальную частоту переменного тока.Несмотря на простоту конструкции схемы, требуются дополнительные схемы для эффективного уменьшения временных изменений источника питания.

Стандарты ограничения мерцания для различных приложений еще не установлены. IES установила две метрики для количественной оценки мерцания. Процент мерцания измеряет относительное изменение модуляции света (глубину модуляции). Индекс мерцания — это показатель, который характеризует изменение интенсивности по всей периодической форме волны (или скважности для прямоугольных сигналов).Процент мерцания лучше известен обычным потребителям. В целом, 10-процентное мерцание или меньше при 120 Гц или 8-процентное мерцание или меньше при 100 Гц приемлемо для большинства людей, за исключением групп риска, 4-процентное мерцание или меньше при 120 Гц или 3-процентное мерцание или меньше при 100 Гц считается безопасным для всех слоев населения и очень востребованным в приложениях с интенсивным зрением. К сожалению, большое количество светодиодных ламп и светильников, представленных в настоящее время на рынке, имеют высокий процент мерцания. В частности, светодиодные фонари переменного тока имеют мерцание, обычно превышающее 30 процентов при 120 Гц.

Защита цепи

В зависимости от топологии драйвера, конструкции схемы и условий применения драйверы светодиодов могут работать в условиях аномалий нагрузки и ненормальных условий эксплуатации, таких как перегрузка по току, перенапряжение, пониженное напряжение, короткое замыкание, обрыв цепи, неправильная полярность, потеря нейтрали, перегрев и т. Д. Следовательно, драйверы светодиодов должны включать механизмы защиты для решения этих проблем.

Выходное напряжение некоторых драйверов постоянного тока, особенно импульсных повышающих преобразователей, может слишком сильно превышать номинальное напряжение привода из-за отключения нагрузки или чрезмерного сопротивления нагрузки.Защита от разомкнутой цепи или защита от перенапряжения на выходе (OOVP) обеспечивает механизм отключения, который использует стабилитрон для обеспечения обратной связи и проведения выходного тока на землю, когда выходное напряжение превышает определенный предел. Более предпочтительным методом защиты от обрыва цепи является использование схемы активной обратной связи по напряжению для отключения источника питания при достижении точки срабатывания по перенапряжению.

Защита от перенапряжения на входе (IOVP) предназначена для снятия напряжения цепи управления от перенапряжения в результате операций переключения / изменения нагрузки в электросети, ударов молнии поблизости, ударов молнии непосредственно в систему освещения или электростатического разряда.В линиях переменного тока небольшое, но продолжительное перенапряжение может вызвать высокие токи (импульсы энергии) в драйвере светодиодов и светодиодах, что может привести к отказу драйвера светодиода и интерфейсов управления, а также к преждевременному старению светодиодов. Металлооксидный варистор (MOV) или ограничитель переходного напряжения (TVS) может быть размещен на входе для поглощения энергии путем ограничения напряжения. Конденсатор с пластиковой пленкой, который обычно подключается к линии переменного тока, чтобы уменьшить эмиссию электромагнитных помех, также помогает поглощать часть энергии в импульсных импульсах.

Драйверы светодиодов

обычно имеют ограниченный уровень защиты от перенапряжения за счет встроенных схем защиты от перенапряжения. В некоторых приложениях, таких как уличное освещение, к драйверу следует добавить дополнительные устройства защиты от перенапряжения, способные выдерживать многократные скачки или удары, чтобы защитить компоненты, расположенные ниже по потоку, от высоких скачков напряжения. УЗИП должен быть рассчитан на снижение или разрядку высокой энергии импульса минимум 10 кВ и 10 кА в соответствии с ANSI C136.2.

Короткое замыкание на нагрузке линейного источника питания может привести к перегреву, но не влияет на ток, подаваемый на каждый светодиод, поскольку цепи ограничения тока обеспечивают автоматическую защиту от короткого замыкания.Однако в импульсном понижающем стабилизаторе короткое замыкание приведет к выходу из строя светодиода или всего модуля в зависимости от конструкции схемы. Выход из строя одного светодиода обычно минимально влияет на общую светоотдачу. Изменение напряжения можно уравновесить с помощью саморегулирующейся схемы распределения тока, которая по-прежнему распределяет ток равномерно. С другой стороны, короткое замыкание на нагрузке светодиодной цепочки может существенно повлиять на общий световой поток. Механизм обнаружения отказов защиты от короткого замыкания может быть реализован путем контроля рабочего цикла.Короткое замыкание обычно приводит к очень короткому рабочему циклу.

Защита от перегрева для светодиодных систем включает температурную защиту модуля (MTP) и ограничение температуры драйвера (DTL). DTC использует резистор с отрицательным температурным коэффициентом (NTC) для уменьшения выходного тока, когда максимальная температура в точке корпуса драйвера в приложении превышает заранее установленный предел. MTC контролирует температуру светодиодного модуля и взаимодействует с драйвером, который автоматически снижает ток, подаваемый на светодиоды, когда MTC определяет пороговую температуру.DTL также может использоваться в качестве альтернативы MTP, если точка TC драйвера и температура светодиодного модуля могут быть коррелированы.

EMI и EMC

Электромагнитные помехи (EMI), также называемые радиочастотными помехами (RFI), влияют на другие электрические цепи в результате либо электромагнитной проводимости, либо электромагнитного излучения, испускаемого электроникой, такой как драйверы светодиодов, радиоприемники CB и сотовые телефоны. Любой драйвер светодиодов, подключенный к сети переменного тока, должен соответствовать стандартам излучения, таким как определено в IEC 61000-6-3.В схеме управления светодиодами переключение MOSFET обычно является основным источником электромагнитных помех. Компоновка печатной платы с короткими и компактными путями для коммутирующих токов также важна для ограничения электромагнитных помех. В некоторых приложениях требуется входной фильтр для уменьшения высокочастотных гармоник, и конструкция этой схемы имеет решающее значение для поддержания низкого уровня электромагнитных помех. Заземляющий слой на печатной плате должен оставаться сплошным, чтобы избежать создания токовой петли, вызывающей излучение высоких уровней электромагнитных помех. Металлический экран может быть установлен над зоной переключения, чтобы обеспечить защиту от электромагнитного излучения.

Электромагнитная совместимость (ЭМС) — это способность устройства или системы работать в своей электромагнитной среде, не создавая электромагнитных помех, мешающих соседнему оборудованию, или не подвергаясь влиянию электромагнитных помех, излучаемых соседним оборудованием. Эффективность ЭМС драйвера светодиода часто автоматически обеспечивается хорошей схемой защиты от электромагнитных помех. Однако электростатический разряд (ESD) и устойчивость к скачкам напряжения, которые не учитываются в практике EMI, также влияют на характеристики EMC.

Соображения безопасности

Безопасность всегда должна оставаться приоритетом номер один при оценке водителя и системы освещения, с которой он работает.Очень желателен светодиодный драйвер с питанием от сети с диэлектрической изоляцией, например, 1500 В RMS (50 или 60 Гц) от входа до выхода. Изоляцию входной / выходной цепи можно выполнить только с помощью трансформатора с первичной и вторичной обмотками с хорошей гальванической развязкой. Выходное напряжение должно быть ниже предела безопасного сверхнизкого напряжения (SELV) 60 В постоянного тока согласно IEC 61140. Однако растет число светодиодных осветительных приборов, которые реализуют неизолированную топологию с целью сокращения затрат.Риск поражения электрическим током является серьезной проблемой для светодиодной продукции, управляемой недорогими линейными регуляторами. Эти цепи не обеспечивают развязку между входными и выходными цепями, а электрическая изоляция систем освещения может быть недостаточно проверена.

Для изделий с питанием от переменного тока необходимо учитывать вопросы длины пути утечки и зазоров. Длина пути утечки между первичной и вторичной цепями должна соответствовать требованиям к расстоянию, в противном случае возможно поражение электрическим током или возгорание.Необходимо учитывать зазор, который определяется как кратчайшее расстояние между двумя проводящими частями, чтобы предотвратить искрение между электродами, вызванное ионизацией воздуха. Поскольку размеры электронных схем продолжают уменьшаться, хорошая конструкция печатной платы имеет важное значение для схемы драйвера, чтобы не только уменьшить эмиссию электромагнитных помех, но также уменьшить проблемы утечки и зазоров.

Все электропроводящие и прикосновенные части драйвера светодиода класса защиты I с питанием от сети должны быть заземлены.Драйверы светодиодов, предназначенные для работы с системами светодиодного освещения для жилых и коммерческих помещений, обычно относятся к Классу II. Для драйверов светодиодов класса II нет заземления корпуса, но все проводники внутри драйверов класса II должны быть двойными или усиленно изолированными, чтобы обеспечить хорошую изоляцию между цепью питания от сети и выходной стороной или металлическим корпусом драйвера.

Температурные характеристики

Драйвер светодиода сконфигурирован для преобразования сетевого напряжения переменного тока в выходное напряжение постоянного тока с максимальной эффективностью, и любая энергия, потерянная в процессе преобразования, будет преобразована в тепло.Это означает, что драйвер светодиода с КПД 90% требует входной мощности 100 Вт / 0,9 = 111 Вт для управления нагрузкой 100 Вт. Среди входной мощности 11 Вт — потери мощности, которые уходят в виде тепла. Это создает высокую тепловую нагрузку на схему драйвера светодиода. Когда драйвер размещен в корпусе светильника, тепловая нагрузка от светодиодов приведет к дополнительному увеличению температуры драйвера. Помимо использования компонентов, рассчитанных на высокие температуры, драйвер должен быть спроектирован так, чтобы отводить тепло от термочувствительных компонентов.Избыточное тепловыделение вызовет проблемы с надежностью компонентов, включая электролитические конденсаторы, которые высыхают под воздействием тепла. Поэтому температура, при которой работает светодиодный драйвер, принципиально важна для определения срока его службы. Для облегчения отвода тепла в драйверах светодиодных светильников высокой мощности используются алюминиевые корпуса, которые могут поставляться с ребрами высокой плотности и теплопроводящей заливкой.

Защита от проникновения

Драйверы светодиодов

для освещения проезжей части, улицы, наружного и ландшафтного освещения должны быть герметизированы для защиты от попадания пыли, влаги, воды и других предметов, которые могут проникнуть внутрь продукции.Высокая степень защиты от проникновения (IP) для светодиодных драйверов имеет решающее значение для использования в помещениях, таких как автомойки, чистые помещения, разливочные и консервные заводы, предприятия пищевой промышленности, фармацевтические предприятия или любое промышленное применение, требующее ежедневного мытья под высоким давлением. Автономные драйверы светодиодов для влажных помещений обычно залиты силиконом, чтобы улучшить целостность корпуса, а также облегчить электрическую изоляцию и управление температурой. Эти драйверы обычно имеют степень защиты IP65, IP66 или IP67.

Местоположение Воздействие

Драйверы светодиодов

могут быть установлены удаленно или совместно с корпусами ламп или светильников. В совместно размещенных системах без DOB драйвер должен быть термически изолирован от светодиодов, которые выделяют огромное количество тепла. При проектировании корпуса светильника следует учитывать техническое обслуживание драйвера. В удаленных системах драйверы ШИМ могут терять производительность на большом расстоянии. Таким образом, CCR является предпочтительным методом диммирования для удаленных систем.

Работа светодиодов от источника переменного тока

Светодиоды обычно считаются устройствами постоянного тока, работающими от нескольких вольт постоянного тока. В маломощных приложениях с небольшим количеством светодиодов это вполне приемлемый подход, например, в мобильных телефонах, где питание подается от батареи постоянного тока. Но другие приложения, например, линейная система ленточного освещения, протянувшаяся на 100 м вокруг здания, требуют других соображений. Привод постоянного тока страдает от потерь на расстоянии, что требует использования более высоких напряжений привода при запуске, а также дополнительных регуляторов, которые тратят энергию.

Напротив, переменный ток лучше работает на расстоянии, поэтому этот метод используется для подачи электроэнергии в дома и предприятия по всему миру. Переменный ток позволяет очень просто использовать трансформаторы для понижения напряжения до 240 В или 120 В переменного тока по сравнению с киловольтами, используемыми в линиях электропередач, но с постоянным током это гораздо более проблематично.

Для работы светодиодного светильника от сети (например, 120 В переменного тока) требуется, чтобы электроника между источником питания и самими устройствами обеспечивала постоянное напряжение (например.грамм. 12 В постоянного тока), способный управлять несколькими светодиодами.

Новый подход заключается в разработке светодиодов переменного тока, которые могут работать непосредственно от источника переменного тока. Это дает несколько преимуществ, как объясняет Боб Коттриш из Lynk Labs, одной из компаний, которая является авангардом этого подхода: «При переменном токе энергия передается и используется гораздо более эффективно», — говорит он. «Если вы можете поставить свои светодиоды прямо на торец без необходимости включать сложную электронику для преобразования переменного тока обратно в постоянный ток, то вы получите двойное преимущество: вы эффективно управляете мощностью в среде распределения, и вы доставили это более эффективно без вмешательства электроники.»

Конечно, если вы также можете получить больше света при меньшем энергопотреблении, как Lynk Labs заявляет о своем подходе AC-LED, тогда у вас еще больше положительной позиции.

Работа светодиодов от источника переменного тока

Существует несколько вариантов управления светодиодами от источника питания переменного тока. Многие автономные светодиодные светильники просто имеют трансформатор между настенной розеткой и светильником для обеспечения необходимого напряжения постоянного тока. Ряд компаний разработали светодиодные лампы, которые вкручиваются напрямую в стандартные розетки, но они неизменно также содержат миниатюрную схему, которая преобразует переменный ток в постоянный перед подачей его на светодиоды.

Другой подход состоит в том, чтобы сконфигурировать светодиоды или сами умереть в мостовой схеме постоянного тока. Хотя переменный ток вводится в эту конфигурацию светодиодной мостовой схемы, светодиоды по-прежнему управляются постоянным током, и этот подход требует большей мощности привода, чем «настоящая» конструкция светодиодов переменного тока.

Одной из ранних форм «настоящей» системы светодиодов переменного тока, в которой устройства работают при прямом подключении к источнику переменного тока, является подход «света рождественской елки». Здесь несколько светодиодов подключены последовательно, так что падение напряжения на всей цепочке равняется напряжению питания.

Однако были предприняты попытки разработать «настоящие» светодиоды переменного тока на уровне сборки или комплектного устройства. В авангарде этих разработок находятся Lynk Labs, Seoul Semiconductor и III-N Technology.

Технология, разработанная Seoul Semiconductor и отдельно III-N Technology, использует подход рождественской елки на уровне кристалла. Светодиодное устройство переменного тока фактически состоит из двух цепочек последовательно соединенных кристаллов, соединенных в разных направлениях; одна струна светится в течение положительной половины цикла переменного тока, а другая — в течение отрицательной.Строки попеременно включаются и отключаются на частоте 50/60 Гц источника питания переменного тока, и, таким образом, светодиод всегда выглядит включенным. Технология, разработанная Сеулом и III-N, специально предназначена для светодиодных устройств, предназначенных для работы от сети переменного тока высокого напряжения 50/60 Гц.

Lynk Labs technology

Lynk Labs, однако, разработала и запатентовала альтернативную технологию AC-LED как для высокого, так и для низкого напряжения переменного тока. Lynk использует существующие светодиоды или кристаллы с различными запатентованными конструкциями драйверов на основе продукта AC-LED.Компания утверждает, что владеет широчайшим портфелем патентов на устройства, сборки, драйверы и системы AC-LED. Кроме того, Lynk и Philips по отдельности придерживаются фундаментальных принципов IP в управлении светодиодами с помощью высокочастотных драйверов инверторного типа.

В отличие от Сеула или III-N, подход Lynk Labs заключался в разработке технологии AC-LED, которая объединяет всего 2 кристалла или светодиода в одной сборке или корпусе вместе с соответствующей технологией драйверов для конкретного AC-LED.

«Производители освещения заинтересованы в предложении светодиодных осветительных приборов, а не в том, чтобы стать экспертами в области электроники или полупроводников», — говорит Майк Мискин, генеральный директор Lynk Labs.«Подход Lynk заключается в предоставлении нашим клиентам комплексных решений plug-and-play».

Технология Lynk Labs AC-LED используется на обоих концах системы. Драйверы компании предназначены для обеспечения светодиодов переменного тока либо (а) постоянным напряжением, либо (б) постоянным напряжением и постоянной частотой. Устройство или сборка AC-LED предназначены для подключения к драйверу без необходимости каких-либо дополнительных инженерных работ, за исключением приспособления, предоставляемого производителем светильника или конечным пользователем.

Для устройства или сборки AC-LED доступны различные конструкции, однако все они основаны на использовании драйверов AC-LED, обеспечивающих либо постоянное напряжение, либо постоянное напряжение и постоянную частоту.

С драйверами постоянного напряжения переменного тока Lynk Labs светодиоды управляются в конфигурации встречно-параллельной цепи на различных частотах в зависимости от приложения. Здесь высокочастотный / низковольтный драйвер используется для управления устройством или сборкой AC-LED, которые соответствуют драйверу постоянного напряжения.В качестве альтернативы другие устройства и сборки предназначены для прямого подключения к электросети или низковольтным трансформаторам, например, к тем, которые используются в ландшафтном освещении.

Светодиоды управления емкостным током

В драйверах постоянного напряжения / постоянной частоты светодиод C 3 (светодиод управления емкостным током) имеет емкостную связь с драйвером и управляется им. Конденсатор заменяет любые резистивные компоненты в системе, тем самым уменьшая нагрев и повышая эффективность.

Светодиодное устройство или узел C 3 включает в себя перевернутый противоположный кристалл или светодиоды со встроенным или встроенным согласующим конденсатором.

По сравнению с использованием того же кристалла в схеме на основе резистора, управляемой постоянным током, светодиодный подход C 3 может обеспечить более высокую яркость при той же мощности (или, альтернативно, использует более низкую мощность при той же яркости), в зависимости от устройства или системы. дизайн.

Стандартное светодиодное устройство обычно питается от источника постоянного тока, и в простейшей форме схема драйвера включает в себя резистор для обеспечения правильного падения напряжения на эмиттере ( Рисунок 1a, ).Напротив, подход C 3 от Lynk Lab использует четное количество светодиодов или кристалл в цепи, которая также содержит конденсатор и подключена к источнику переменного тока (, рис. 1b, ). Система спроектирована таким образом, что оба полупериода волны переменного тока используются эффективно.

Типичное светодиодное устройство C 3 объединяет 2 или более светодиода на кристалл (кратно 2 или более, чтобы эффективно использовать обе половины цикла переменного тока) с конденсатором.

Майк Мискин объясняет роль конденсатора в цепи.«Подобно резистору в цепи постоянного тока, конденсатор снижает напряжение и подает требуемый ток на светодиоды в зависимости от напряжения и частоты, поступающих на конденсатор от источника переменного тока. Когда источник переменного тока, такой как сеть переменного тока или запатентованный нами драйверы высокочастотного инвертора (технология BriteDriver от Lynk Labs) обеспечивают постоянное напряжение и постоянную частоту, конденсатор подает постоянный ток на светодиоды, но также изолирует светодиоды от других светодиодов в системе и от драйвера в случае сбоя. происходить.»

Хотя оба устройства, указанные выше, требуют разных напряжений и токов, они оба могут быть подключены к одному и тому же драйверу AC-LED или источнику питания без необходимости в дополнительной электронике или компонентах.

Этот подход C 3 LED также улучшает управление температурой , эффективность за счет устранения резистивной составляющей, которая необходима в цепи постоянного тока.

Надежность системы

Существует также проблема дополнительной надежности.

В цепи с постоянным током, показанной на рис. текущий драйвер отправляет 1.4 А на 4 параллельных цепочках светодиодов, при 350 мА на цепочку. Если одна строка выходит из строя (, рис. 2b, ), драйвер по-прежнему выдает 1,4 А, что теперь означает 467 мА на каждой из оставшихся 3 строк. Этой ситуации перегрузки по току, которая явно нежелательна, можно избежать с помощью технологии Lynk Labs AC-LED. На рисунке , рис. 3a, , источник питания 12 В переменного тока обеспечивает 350 мА каждой из четырех цепочек светодиодов C 3 , каждая из которых, в свою очередь, содержит 6 эмиттеров.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *